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Initial equations
System of hydrothermodynamics

∂V⃗

∂t
= −∇⃗p′

ρ
+ g⃗

ρ′

ρ
, (1)

∂p′

∂t
= −V⃗ · (∇⃗p) − γp(∇⃗ · V⃗ ), (2)

∂ρ′

∂t
= −V⃗ · (∇⃗ρ) − ρ(∇⃗ · V⃗ ), (3)

where V⃗ is the gas flow velocity; p′ is the wave contribution to the background pressure
p; ρ′ is the wave contribution to the background density ρ.

ρ̄(z) = ρ0 exp
(

− z

H

)
, p̄(z) = p0 exp

(
− z

H

)
= ρ̄(z)gH, (4)

where ρ0 = ρ̄(z = 0), p0 = p̄(z = 0), and the relationship between the equilibrium
pressure and density follows from the stationary zero-order equality dp̄/dz = −gρ̄(z),
given gx = 0, gy = 0, gz = −g.
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Initial equations
1D system of hydrothermodynamics

The one-dimensional linearized system of hydrothermodynamics:

∂U

∂t
= 1

ρ0

(
γ − 2

2γH(0)
− H(z)

H(0)
∂

∂z

)
P + Φ

γH(0)ρ0
, (5)

∂P

∂t
= −γgH(0)ρ0

∂U

∂z
− gH(0)ρ0

γ − 2
2H(z)

U, (6)

∂Φ

∂t
= −

γ − 1 + γ dH(z)
dz

H(z)
gH(0)ρ0U, (7)

Here P, Φ, U are functions that represent the pressure perturbation p′, the entropy
perturbation φ′ = p′ − γρ′p/ρ and the vertical flow velocity V respectively and are
related to the real values as

P = p′ · exp

 z∫
0

dz′

2H(z′)

 , Φ = φ′ · exp

 z∫
0

dz′

2H(z′)

 , U = V · exp

−
z∫

0

dz′

2H(z′)

 ,

γ = Cp/Cv; Cp, Cv are molar heat capacities at constant pressure and volume, g = gz is
the vertical component of gravity field vector g⃗, ρ0 and ρ′ is the air density at the lower
boundary its perturbation respectively.
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Initial equations
1D Klein-Gordon equation

The one-dimensional system of hydrothermodynamics (1)-(3) can be reduced to the
one-dimensional Klein-Gordon equation by differentiating the equation (5) with respect to
the time t and replacing the derivatives ∂P/∂t and ∂Φ/∂t with (6) and (7):

∂2U

∂t2 − γgH(z)∂2U

∂z2 + gγ

4H(z)

(
1 + 2dH(z)

dz

)
U = 0 (8)

or
∂2U

∂t2 − c2(z)∂2U

∂z2 + a(z)U = 0, (9)

where

c(z) =
√

γgH(z), a(z) = gγ

4H(z)

(
1 + 2dH(z)

dz

)
. (10)
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Initial equations
Initial and boundary condition

We complete Klein-Gordon equation with the initial-boundary conditions:

U
∣∣∣
t=0

= Ut

∣∣∣
t=0

= 0, U
∣∣∣
z=0

= F n(t), (11)

F n(t) = An

(n + 1)!
λn+2tn+1e−λt, at t > 0, F (t) = 0, at t ≤ 0, (12)

where λ characterizes the duration of the pulse and A its amplitude.
Later we will discuss results obtained with the boundary conditions for n = 0, 1, 2:

Figure: Boundary conditions F 1(t) = Aλ2te−λt (red), F 2(τ) = A
2 λ3t2e−λt (pink), F 3(τ) = A

6 λ4t3e−λt

(blue) for A = 1, λ = 1/300.
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Solution
Analytical solution in case H = H0

Theorem 1. For constant value of the atmospheric scale height H(z) = H(z = 0) = H0
the coefficients take on a constant value c(0), a(0) and the initial-boundary value problem
for the Klein-Gordon equation can be analytically solved [1]:

U(t, z) = U1(t, z) + U2(t, z) (13)

U1(t, z) = 1
π

Re

√
a(0)∫

0

F(iη)e
(

iηt− z
c(0)

√
a(0)−η2

)
dη, (14)

U2(t, z) = 1
π

Re
∞∫

√
a(0)

F(iη)ei
(

ηt− z
c(0)

√
η2−a(0)

)
dη, (15)

where F(iη) is the Laplace image of the boundary condition (11):

F(iη) = F(s) =
∫ ∞

0
F (t)e−st dt. (16)

Remark 1: For a = 0, the resulting formula (13) becomes the exact formula of the
initial-boundary value problem solution for the wave equation.
[1] Smirnova, E.S. Asymptotics of the Solution of an Initial–Boundary Value Problem for the One-Dimensional Klein–Gordon

Equation on the Half-Line. Math Notes 114, 608–618 (2023). https://doi.org/10.1134/S0001434623090286
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Solution
H=H(z) approximation

Figure: Atmospheric scale height H = H(T (z))
calculated from numerical simulation data for
temperature (blue) and its approximation (17) (pink).

Since finding a solution in the
case of H = H(z) requires its explicit form,
for the altitude range from 0 to 200 km,
the following approximation was chosen:

H(z) = 7000+0.135z tanh5
( z

12000

)
. (17)

Remark 2: Such an approximation
at low altitudes gives an almost constant
value of both the atmospheric scale height
H = H(z) and of the main coefficients
c(z) and a(z) of the Klein-Gordon equation.
Thus, in this area the solution of the initial
boundary value problem in the case of variable coefficients c(z) and a(z) coincides with
the exact solution for constant values of the coefficients c(0) and a(0).

IPMech RAS, IKBFU E. Smirnova, S. Dobrokhotov BSFP-2024 September 4, 2024 7/13



Solution
Asymptotic solution in case H = H(z)
Theorem 2: The leading term of the formal asymptotic solution of the problem (9),(11) is determined by the formulas [2]:

U = U1 + U2, U1(τ, y) = e− y
h

πτ
Re [F(0, h)] , U2 = c(y)

c(0)
(
KΛ+

τ
A+

0 + KΛ−
τ

A−
0
)

. (18)

Remark 3: For low altitudes in the region under study, the form of the asymptotic of the wave-propagating part of the solution:

U2(y, τ) = KΛ+
τ
A+

0 + KΛ−
τ

A−
0 = 1

2πh

∞∫
0

F(
√

c2(0)p2 + a(0), h)e
i
h

(
py−τ

√
c2(0)p2+a(0)

)
c2(0)p√

c2(0)p2 + a(0)
dp−

− 1
2πh

0∫
−∞

F(
√

c2(0)p2 + a(0), h)e
i
h

(
py+τ

√
c2(0)p2+a(0)

)
c2(0)p√

c2(0)p2 + a(0)
dp = (19)

= 1
πh

Re
∞∫

0

F(
√

c2(0)p2 + a(0), h)e
i
h

(
τ
√

c2(0)p2+a(0)−py
)

c2(0)p√
c2(0)p2 + a(0)

dp.

For medium and high altitudes in the region under study, the form of the asymptotics of the wave-propagating part of the solution:

U2 = c(y)
c(0)

(
KΛ+

τ
A+

0 + KΛ−
τ

A−
0
)

= 1√
2πh

c(y)
c(0)

(
e

i
h S+(α,τ)αc2(0)√

J+(α, τ)(α2c2(0) + a(0))
F̄(
√

α2c2(0) + a(0), h)
)∣∣∣∣∣

α=α+(y,τ)

+

+ 1√
2πh

c(y)
c(0)

(
e− i

h S−(α,τ)αc2(0)√
J−(α, τ)(α2c2(0) + a(0))

F(
√

α2c2(0) + a(0), h)
)∣∣∣∣∣

α=α−(y,τ)

= (20)

=
√

2
πh

c(y)
c(0)Re

(
e

i
h S+(α,τ)αc2(0)√

J+(α, τ)(α2c2(0) + a(0))
F̄(
√

α2c2(0) + a(0), h)
)∣∣∣∣∣

α=α+(y,τ)

.

[2] Dobrokhotov, S., Smirnova, E. Asymptotics of the Solution of the Initial Boundary Value Problem for the One-Dimensional
Klein–Gordon Equation with Variable Coefficients. Russ. J. Math. Phys. 31, 187–198 (2024).
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Results
Asymptotic solution in case H = H0

Return to the physical functions of flow velocity disturbance is carried out through (8):

V = U · exp
(

z

2H0

)
(21)

Figure: Comparison of analytical (numerical calculation) and asymptotic solutions for constant value
H = H0 = 7000 m.
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Results
Asymptotic solution in case H = H(z)
Return to the physical functions of flow velocity disturbance is carried out through (8):

V = U · exp

 z∫
0

dz′

2H(z′)

 (22)

Figure: Comparison of time evolution of the asymptotic solutions (19) for H = H0 = 7000 m (black) and
(20) for H = H(z) (17) (red).
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Results
Different boundary conditions

Figure: (a) Boundary conditions F 1(t) (red), F 2(t) (pink), F 3(t) (blue); (b) Asymptotics of solution at
t = 540 s in case H = H(z) corresponding each boundary condition. To simplify the analysis, the
amplitudes were normalized: A1 = 1; A2 = 10; A3 = 100.
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Discussion

The initial-boundary value problem is solved both analytically
and asymptotically in a general form, therefore, parameters of
the problem, as well as the boundary condition, can be
refined for a more specific physical problem.
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Thank you for your attention.


