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Initial equations
System of hydrothermodynamics

o5 +9%> (1)
a/
===V -(Vp) =BV - V), @
o0 o e _= o
o =V (VP = (V- V), (3)

where V is the gas flow velocity; p’ is the wave contribution to the background pressure
p; p' is the wave contribution to the background density p.

p(z) = poexp (=)« Bl(=) = poexp (=) = p(=)gH, )
where py = p(z = 0), py = p(z = 0), and the relationship between the equilibrium
pressure and density follows from the stationary zero-order equality dp/dz = —gp(z),

giveng, =0,9,=0,9. = —g.
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Initial equations
1D system of hydrothermodynamics

The one-dimensional linearized system of hydrothermodynamics:

ou 1 (~v—2 H(z) 8:) D
= — P+ — S
ot po (Q”yH(O) H(0) 0z YH (0)po ©
or oU V=2
ot = ~V9HOpZ — gHO)py 50, ©)
o0 v—1+482

Here P, @, U are functions that represent the pressure perturbation p’, the entropy
perturbation ' = p’ — vp'p/p and the vertical flow velocity V' respectively and are
related to the real values as

Z dz’ Z dz’ / dz’
P=9. = . Uu=V- —/
poexp / oH(Y | ¥ P / SH(Z) | P YH(Z |
0 0 0

v =C,/Cy; C,, C, are molar heat capacities at constant pressure and volume, g = ¢. is
the vertical component of gravity field vector g, py and o’ is the air density at the lower
boundary its perturbation respectively.
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Initial equations
1D Klein-Gordon equation

The one-dimensional system of hydrothermodynamics (1)-(3) can be reduced to the
one-dimensional Klein-Gordon equation by differentiating the equation (5) with respect to
the time ¢ and replacing the derivatives 9 P/0t and 0&/0t with (6) and (7):

0*U 0*U gy dH(z) B
W_/YQH(Z)&ZQ—’_ZLH(Z) (1—|—2 7 )UO (8)
or - .
W—C()WﬂLa( 2)U =0, (9)
where JH(2)
(2) = VI, al) = i (1425 (10)
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Initial equations
Initial and boundary condition

We complete Klein-Gordon equation with the initial-boundary conditions:

U = U; =0, U = F"(1), (11)
t=0 t=0 z=0

Ap

Fr(t) = —Z_\"2¢nHle=A gt t>0, F(t)=0, at t<O0, (12)
(n+1)!

where A\ characterizes the duration of the pulse and A its amplitude.

Later we will discuss results obtained with the boundary conditions for n = 0, 1, 2:
z=0

u
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Figure: Boundary conditions F(t) = AX*te™* (red), F*(1) = 4 X%~ (pink), F3(r) = 4 \1t3e N
(blue) for A = 1, A = 1/300.
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Solution
Analytical solution in case H = H,

Theorem 1. For constant value of the atmospheric scale height H(z) = H(z = 0) = Hy
the coefficients take on a constant value ¢(0), a(0) and the initial-boundary value problem
for the Klein-Gordon equation can be analytically solved [1]:

Ul(t,z) =Ui(t, z) + Usl(t, z) (13)
a(0)
1 int——2 Ja(0 =2
Ui(t,z) = —Re / Flinyelm=VIOF) g (14)
T
0
1 i(nt—=s+/n%—a
Us(t,z) = —Re / F(in)e <nt VY (0))d77, (15)
i
a(0)
where F(in) is the Laplace image of the boundary condition (11):
Flin) = F(s) = / F(t)e—"dt. (16)
0

Remark 1: For a = 0, the resulting formula (13) becomes the exact formula of the
initial-boundary value problem solution for the wave equation.

[1] Smirnova, E.S. Asymptotics of the Solution of an Initial-Boundary Value Problem for the One-Dimensional Klein—Gordon
Equation on the Half-Line. Math Notes 114, 608618 (2023). https://doi.org/10.1134/S0001434623090286
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Solution
H=H(z) approximation

Since finding a solution in the

case of H = H(z) requires its explicit form,
for the altitude range from 0 to 200 km,

the following approximation was chosen:

H(2) = 7000-+0.1352 tanh® (L) 17
(2) + ztan 5000 (17)

Remark 2: Such an approximation

at low altitudes gives an almost constant
value of both the atmospheric scale height
H = H(z) and of the main coefficients

c(z) and a(z) of the Klein-Gordon equation.
Thus, in this area the solution of the initial

Atmospheric scale height

H

25000
20000 |
15000 |
10000 |

5000 [

Figu

50000 100000 150000 200000

re: Atmospheric scale height H = H(T'(z))

calculated from numerical simulation data for
temperature (blue) and its approximation (17) (pink).

boundary value problem in the case of variable coefficients ¢(z) and a(z) coincides with
the exact solution for constant values of the coefficients ¢(0) and a(0).
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Solution

Asymptotic solution in case H = H(z)

Theorem 2: The leading term of the formal asymptotic solution of the problem (9),(1 1 ) is determined by the formulas [2]:

y

U=U,+U, Ur,y) = %Re [F(0,h)], U= % (K AY + K - Ay) (18)

Remark 3: For low altitudes in the region under study, the form of the asymptotic of the wave-propagating part of the solution:

2
—T4/C? 2+a 0
Usly, ) = Ky A + Ko Ag = 5 h/f (VEDRF + a0), h)et (v VEO0) QC( i <dp-
T \/C p +(l

s | FWEO . et V) O - (19)

I 2007+ al (/@0 a0 -py) _ (0)p
R/]—"\/ 0)p? + a(0), h)e” Ve p+a>dp

For medium and high altitudes in the region under study, the form of the asymptotics of the wave-propagating part of the solution:

B @ N 1 ey 6%5+(a77)a02(0) (ot -
Uy = c(0) (K/liAO "J’"KA;AO) - \/orh c(0) <\/J+(a,T)(a202(0) —I—CL(O))}—(\/ O <0)7h)> o a+(y,T)+
L) (el _ 2
T e0) <\/J(a,7)(a2c2(0)+a( F(V )h>> o (20)

2 c enS (@) (0 -
- \/%cgg; fe <\/J+(a T><a2c2<0§ i a(@))ﬂ\/a%z(m +al0), h)>
’ a=at(y,7)
[2] Dobrokhotov, S., Smirnova, E. Asymptotics of the Solution of the Initial Boundary Value Problem for the One-Dimensional
Klein—Gordon Equation with Variable Coefficients. Russ. J. Math. Phys. 31, 187—198 (2024).
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Results
Asymptotic solution in case H = H,

Return to the physical functions of flow velocity disturbance is carried out through (8):

<
V=U-ep|— (21)
2H
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Figure: Comparison of analytical (numerical calculation) and asymptotic solutions for constant value
H = Hy = 7000 m.
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Results

Asymptotic solution in case H = H(z)

Return to the physical functions of flow velocity disturbance is carried out through (8):

z

dz’
V =U"-exp / H () (22)
t=270s t=540s
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Figure: Comparison of time evolution of the asymptotic solutions (19) for H = H, = 7000 m (black) and
(20) for H = H(z) (17) (red).
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Results
Different boundary conditions

t=540s
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Figure: (a) Boundary conditions £ (t) (red), F(t) (pink), F3(¢) (blue); (b) Asymptotics of solution at
t = 540 s in case H = H(z) corresponding each boundary condition. To simplify the analysis, the
amplitudes were normalized: A; = 1; A, = 10; A3 = 100.

IPMech RAS, IKBFU E. Smirnova, S. Dobrokhotov BSFP-2024 September 4, 2024 11/13



Discussion

The initial-boundary value problem is solved both analytically
and asymptotically in a general form, therefore, parameters of
the problem, as well as the boundary condition, can be
refined for a more specific physical problem.
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Thank you for your attention.
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