# Ballooning instability and conditions for it development the Earth's magnetosphere

1-7 September 2024

Petrashchuk A.V. Klimushkin D.Yu. Mager P.N.

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶ ▲□▶

- It develops in the magnetosphere, taking into account the finite plasma pressure and curvature of the lines of force;
- Provided that plasma pressure drops rapidly with distance from the Earth;

< □ > < @ > < 注 > < 注 > ... 注

- For azimuthally small-scale modes  $(\lambda_a \ll \lambda_{\parallel})$ ;
- Can be responsible for initiating sub-storms in the magnetosphere.

#### What was studied:

- Transition of Alfvén modes to the ballooning instability mode (Oberhagemann et. al., 2020);
- Transition of slow magnetosonic modes (SMS) to the ballooning instability mode (Mazur et al., 2013)

#### What was not studied:

- Connection between ballooning instability and MHD modes in non-uniform plasma (Alfvén, SMS);
- ▶ Dependence of development conditions for instability on the radial wavelength (usually study in the limit  $k_r/k_a \approx 0$ )

## 3 Problem statement

- Determine the conditions for the development of ballooning instability depending on the plasma pressure and its gradient for the first two harmonics.
- To study the dispersion relation of coupled Alfvén and SMS modes. To obtain the numerical dependence of the γ instability growth rate on the ratio of the radial and azimuthal components of the wave vector k<sub>r</sub>/k<sub>a</sub> for a two-dimensionally inhomogeneous magnetosphere model.
- To study the longitudinal structure of eigenfunctions of coupled Alfvén and SMS modes for the first two harmonics in stable and unstable regimes.

#### 4 Basic equations

$$\frac{k_1^2}{k_2^2}\hat{L}_T(\omega)\Phi + \hat{L}_P(\omega)\Phi - \sqrt{\frac{g_1}{g_2}}\frac{8\pi}{B^2R}\frac{\partial P}{\partial L}\Phi = \sqrt{g_1}\frac{2\omega}{R}\frac{V_S}{V_A}\Theta, \quad (1)$$

$$\hat{L}_S(\omega)\Theta = \sqrt{g_1} \frac{2\omega}{R} \frac{V_S}{V_A} \Phi.$$
(2)

 $\Phi$  — transverse potential of the electric field:

 $\Theta$  —proportional to the divergence of the plasma displacement:

 $E = E_{\perp} = -\nabla_{\perp}\Phi \qquad (3)$ 

uniform plasma:  $\Phi$  — Alfvén mode  $\Theta$  — SMS mode non-uniform plasma:  $\Phi$  — transverse electric field of the wave  $\Theta$  — rarefaction/compression of plasma  $\Theta = \frac{\sqrt{4\pi\gamma P}}{ck_a} \nabla \cdot \boldsymbol{\xi} \quad (4)$ Differential operators:  $\hat{L}_T(\omega) = \frac{\partial}{\partial l_{\parallel}} \sqrt{\frac{g_2}{g_1}} \frac{\partial}{\partial l_{\parallel}} + \sqrt{\frac{g_2}{g_1}} \frac{\omega^2}{V_A^2},$ (5) $\hat{L}_P(\omega) = \frac{\partial}{\partial l_{\parallel}} \sqrt{\frac{g_1}{g_2}} \frac{\partial}{\partial l_{\parallel}} + \sqrt{\frac{g_1}{g_2}} \frac{\omega^2}{V_A^2},$ (5)

SAC

#### Characteristics of the ionosphere: Ideal conductivity:

$$\Phi|_{\theta=\theta_{\pm}} = 0. \tag{7}$$

High density, 
$$\xi_{\parallel} = 0$$
:  
 $\frac{\partial \Theta}{\partial l_{\parallel}}\Big|_{\theta=\theta_{\pm}} = 0.$  (8)  
 $\frac{\omega^2}{V_S^2}\frac{\omega}{k_ac} = -\frac{\omega}{\sqrt{4\pi\gamma P}}\frac{\partial \Theta}{\partial l_{\parallel}}$  (9)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

#### 6 Solution methodology

$$\frac{k_1^2}{k_2^2}\hat{L}_T(\omega)\Phi + \hat{L}_P(\omega)\Phi - \sqrt{\frac{g_1}{g_2}}\frac{8\pi}{B^2R}\frac{\partial P}{\partial L}\Phi = \sqrt{g_1}\frac{2\omega}{R}\frac{V_S}{V_A}\Theta, \quad (10)$$

$$\hat{L}_S(\omega)\Theta = \sqrt{g_1} \frac{2\omega}{R} \frac{V_S}{V_A} \Phi.$$
(11)

We solve on a certain *L*-shell (geostationary orbit, L = 6.6) Boundary value problem:  $\omega$  — parameter,  $k_1^2/k_2^2$  — eigenvalue. As a result, we find the dependence of the value  $k_1^2/k_2^2$  on  $\omega^2$ . Plasma parameters:

D — reverse pressure gradient at the equator,  $|\nabla P| = P/D$  $\beta$  — ratio of plasma pressure to magnetic pressure at the equator.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

## 7 General view of the solution solution

Two transparency regions  $(k_1^2 > 0)$ : one for the Alfven mode, the other for the SMS

Example of normal dispersion for SMS (wave, stability):



8 Changes in the structure of  $\Theta_N$  during the transition from a stable to an unstable regime (from  $k_r \to \infty$  to 0)



Puc.: 4.The ratio  $k_r^2/k_a^2$  for the fundamental harmonic as a function of the square of the frequency  $\omega^2$ . Changes in the structure of  $\Theta_1$  from magnetic latitude  $\theta$ . Harmonics (1) and (2) correspond to the SMS modes ( $\omega^2 > 0$ ). Harmonic (3) corresponds to the case  $\omega^2 = 0$  (the instability boundary). Harmonics (4) and (5) correspond to the minimum and maximum instability increment.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

### 9 Increment of ballooning instability

The ballooning instability increment  $\gamma = \sqrt{-\omega^2}$  reaches its maximum value at  $k_r = 0$ , the ratio  $k_r/k_a$  tends to some critical value at  $\omega \approx 0$ .



**Puc.:** 3. Dependence of the instability increment  $\gamma$  on the ratio of the radial and azimuthal wave numbers  $k_r/k_a$  for the fundamental N = 1 (left) and second N = 2 (right) harmonics.

### 10 Plasma stability



**Puc.**: 4.Instability threshold of the fundamental N = 1 (black) and second N = 2 (red) harmonics: scale of radial inhomogeneity of plasma pressure D depending on  $\beta$  at the equator. The instability region (on the L = 6.6 shell) lies below the corresponding curves.

- ▶ Ballooning instability can be considered as a continuation of the slow magnetosonic mode in the sense that it develops on the same dispersion branch. There is a significant difference in the eigenfunctions  $\Phi$  and  $\Theta$  in stable and unstable cases. In the stable regime,  $\Theta$  and  $\Phi$  are real. In the stable regime,  $\Theta$  and  $\Phi$  are real. In the unstable regime, both eigenfunctions cannot be simultaneously real: they have a phase shift of  $\pi/2$ .
- ▶ It has been established that the largest instability increment corresponds to the value  $k_r^2 = 0$  and it approaches zero when the ratio  $k_r/k_a$  tends to some critical value near  $\omega \approx 0$ .
- ▶ The conditions of ballooning instability are considered depending on the radial non-uniformity of plasma pressure D and the parameter  $\beta$ . At large  $\beta$  the instability threshold is reached by smaller pressure gradients D. The situation with large  $\beta$  and small D is typical for magnetic storms, when a strong ring current develops in the magnetosphere.

## Thank you attention !

#### 1-7 September 2024

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへの

### 12 Unstable ballooning oscillations of the magnetic field

$$B_{\parallel} = \frac{ck_a}{\omega} \left[ B \frac{V_S^2}{V_A^2} \nabla \cdot \xi + \frac{1}{\sqrt{g_1}} \frac{4\pi}{B^2} \frac{\partial P}{\partial L} \Phi \right] - \text{compression component;} \quad (12)$$
$$B_r = -\frac{ck_a}{\omega} \frac{\partial \Phi}{\partial l} - \text{radial component.} \quad (13)$$



**Puc.**: 7. Unstable ballooning oscillations of the radial  $B_r$  and longitudinal  $B_{\parallel}$  magnetic field for the fundamental (left) and second (right) harmonics at the maximum instability increment  $(k_r = 0)$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

#### 13 Basic equations

$$i\rho\omega^{2}\xi = -\nabla(\xi \cdot \nabla P + \gamma P \nabla \cdot \xi) - \frac{1}{4\pi}J_{0} \times \nabla \times [\xi \times B_{0}] + \frac{1}{4\pi}B_{0} \times \nabla \times [\nabla \times \xi \times B_{0}],$$
(14)

 $\Phi$  — transverse potential of the electric field of the Alfvén wave:

$$E = E_{\perp} = -\nabla_{\perp}\Phi$$
(15)

uniform plasma:  $\Phi$  — Alfvén mode  $\Theta$  — SMS mode non-uniform plasma:  $\Phi$  — transverse electric field of the wave  $\Theta$  — rarefaction/compression of plasma  $\Theta$  — proportional to the divergence of the plasma displacement:

$$\Theta = \frac{\sqrt{4\pi\gamma P}}{ck_a} \nabla \cdot \boldsymbol{\xi} \quad (16)$$



## 14 ВКБ-приближение

If the azimuthal number  $k_a \gg \frac{1}{P} \frac{\partial P}{\partial L}$ :

$$\Phi \propto \Phi_N(l_{\parallel}) \exp[i \int k_1 dL']$$

$$\frac{k_1^2}{k_2^2}\hat{L}_T(\omega)\Phi + \hat{L}_P(\omega)\Phi - \sqrt{\frac{g_1}{g_2}}\frac{8\pi}{B^2R}\frac{\partial P}{\partial L}\Phi = \sqrt{g_1}\frac{2\omega}{R}\frac{V_S}{V_A}\Theta, \quad (17)$$

$$\hat{L}_S(\omega)\Theta = \sqrt{g_1} \frac{2\omega}{R} \frac{V_S}{V_A} \Phi.$$
(18)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 ○

$$V_A = \frac{B}{\sqrt{4\pi\rho}}, \quad V_S = \sqrt{\frac{\gamma P}{\rho}}, \quad V_C = \frac{V_A V_S}{\sqrt{V_A^2 + V_S^2}}.$$
 (19)

R-radius of curvature of a field line

Mager P.N., Klimushkin D. Yu. Theory of azimuthally small-scale Alfvén waves in an axisymmeric magnetosphere with small but finite plasma pressure. JGR. 2002. Vol.107, P. 1356.

#### 15 Basic equations: differential operators

Toroidal and poloidal differential operators:

$$\hat{L}_{T}(\omega) = \frac{\partial}{\partial l_{\parallel}} \sqrt{\frac{g_{2}}{g_{1}}} \frac{\partial}{\partial l_{\parallel}} + \sqrt{\frac{g_{2}}{g_{1}}} \frac{\omega^{2}}{V_{A}^{2}},$$
(20)

$$\hat{L}_{P}(\omega) = \frac{\partial}{\partial l_{\parallel}} \sqrt{\frac{g_{1}}{g_{2}}} \frac{\partial}{\partial l_{\parallel}} + \sqrt{\frac{g_{1}}{g_{2}}} \frac{\omega^{2}}{V_{A}^{2}},$$
(21)

These operators define the longitudinal structure of toroidal and poloidal Alfvén modes. The SMS operator:

$$\hat{L}_{S}(\omega) = \frac{\partial}{\partial l_{\parallel}} V_{S}^{2} \sqrt{g_{1}g_{2}} \frac{\partial}{\partial l_{\parallel}} + \sqrt{g_{1}g_{2}} \frac{V_{S}^{2}}{V_{C}^{2}} \omega^{2}.$$
(22)

$$g_1 = \frac{\cos^6 \theta}{1 + 3\sin^3 \theta}, \ g_2 = L^2 \cos^6 \theta.$$
 (23)

$$\partial l_{\parallel} = \sqrt{g_3} \partial x^3 = L \cos \theta \sqrt{1 + 3 \sin^3 \theta} \partial \theta. \tag{24}$$

#### 16 Boundary conditions on the ionosphere

Characteristics of the ionosphere:

$$\Phi(l_{\parallel}) = \mp i \frac{c^2}{4\pi\omega\Sigma_{\pm}} \frac{\partial\Phi}{\partial l_{\parallel}}$$
(25)

Ideal conductivity:

$$\Phi|_{\theta=\theta_{\pm}} = 0. \tag{26}$$

$$\frac{\omega^2}{V_S^2}\frac{\omega}{k_a c} = -\frac{\omega}{\sqrt{4\pi\gamma P}}\frac{\partial\Theta}{\partial l_{\parallel}}$$
(27)

High density,  $\xi_{\parallel} = 0$ :

$$\left. \frac{\partial \Theta}{\partial l_{\parallel}} \right|_{\theta = \theta_{\pm}} = 0. \tag{28}$$

▲ロト ▲御ト ▲画ト ▲画ト ▲目 ● のへの