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1 Introduction: Ballooning instability

> It develops in the magnetosphere, taking into account the
finite plasma pressure and curvature of the lines of force;

» Provided that plasma pressure drops rapidly with distance from
the Earth;

> For azimuthally small-scale modes (A, < \);

» Can be responsible for initiating sub-storms in the
magnetosphere.



2 Introduction: Unsolved problems

What was studied:

» Transition of Alfvén modes to the ballooning instability mode
(Oberhagemann et. al., 2020);

» Transition of slow magnetosonic modes (SMS) to the
ballooning instability mode (Mazur et al., 2013)

What was not studied:

» Connection between ballooning instability and MHD modes in
non-uniform plasma (Alfvén, SMS);

» Dependence of development conditions for instability on the
radial wavelength (usually study in the limit &, /kq =~ 0)



3 Problem statement

» Determine the conditions for the development of ballooning
instability depending on the plasma pressure and its gradient
for the first two harmonics.

» To study the dispersion relation of coupled Alfvén and SMS
modes. To obtain the numerical dependence of the ~
instability growth rate on the ratio of the radial and azimuthal
components of the wave vector k, /k, for a two-dimensionally
inhomogeneous magnetosphere model.

» To study the longitudinal structure of eigenfunctions of

coupled Alfvén and SMS modes for the first two harmonics in
stable and unstable regimes.



4 Basic equations
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5 Boundary conditions on the ionosphere

Characteristics of the ionosphere:
Ideal conductivity:
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6 Solution methodology
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We solve on a certain L-shell (geostationary orbit, L = 6.6)
Boundary value problem: w — parameter, k7 /k3 — eigenvalue.
As a result, we find the dependence of the value k% /k3 on w?.
Plasma parameters:
D — reverse pressure gradient at the equator, |VP| = P/D

[ — ratio of plasma pressure to magnetic pressure at the equator.



7 General view of the solution solution

Two transparency regions (k3 > 0): one for the Alfven mode, the
other for the SMS

Example of normal dispersion for SMS (wave, stability):

kr2/ka2




8 Changes in the structure of ©y during the transition from

a stable to an unstable regime (from &, — oo to 0)
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Puc.: 4.The ratio k2/k2 for the fundamental harmonic as a function of
the square of the frequency w?. Changes in the structure of ©; from
magnetic latitude 6. Harmonics (1) and (2) correspond to the SMS
modes (w? > 0). Harmonic (3) corresponds to the case w? = 0 (the
instability boundary). Harmonics (4) and (5) correspond to the minimum
and maximum instability increment.



9 Increment of ballooning instability

The ballooning instability increment v = v/—w? reaches its maximum value at
k- = 0, the ratio k,/k, tends to some critical value at w =~ 0.
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Puc.: 3. Dependence of the instability increment -y on the ratio of the radial
and azimuthal wave numbers k. /k, for the fundamental N =1 (left) and
second N = 2 (right) harmonics.



10 Plasma stability
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Puc.: 4.Instability threshold of the fundamental N =1 (black) and
second N = 2 (red) harmonics: scale of radial inhomogeneity of plasma
pressure D depending on 3 at the equator. The instability region (on the
L = 6.6 shell) lies below the corresponding curves.



11 Conclusion

» Ballooning instability can be considered as a continuation of the slow
magnetosonic mode in the sense that it develops on the same dispersion
branch. There is a significant difference in the eigenfunctions ® and © in
stable and unstable cases. In the stable regime, ©® and ® are real. In the
stable regime, © and @ are real. In the unstable regime, both
eigenfunctions cannot be simultaneously real: they have a phase shift of
/2.

» It has been established that the largest instability increment corresponds
to the value k2 = 0 and it approaches zero when the ratio k. /k, tends to
some critical value near w ~ 0.

» The conditions of ballooning instability are considered depending on the
radial non-uniformity of plasma pressure D and the parameter 3. At large
[ the instability threshold is reached by smaller pressure gradients D. The
situation with large 8 and small D is typical for magnetic storms, when a
strong ring current develops in the magnetosphere.
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12 Unstable ballooning oscillations of the magnetic field
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Puc.: 7. Unstable ballooning oscillations of the radial B, and longitudinal
B)| magnetic field for the fundamental (left) and second (right)
harmonics at the maximum instability increment (k, = 0).
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® — transverse potential
of the electric field of the
Alfvén wave:

E=E =-V,®
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uniform plasma:

® — Alfvén mode

© — SMS mode

non-uniform plasma:

® — transverse electric field of
the wave )

© — rarefaction/compression

of plasma

13 Basic equations
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R — radius of curvature of a field line

Mager P.N., Klimushkin D. Yu. Theory of azimuthally small-scale Alfvén waves in an
axisymmeric magnetosphere with small but finite plasma pressure. JGR. 2002.
Vol.107, P. 1356.



15 Basic equations: differential operators

Toroidal and poloidal differential operators:
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These operators define the longitudinal structure of toroidal and
poloidal Alfvén modes. The SMS operator:
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16 Boundary conditions on the ionosphere

Characteristics of the ionosphere:
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