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1 Introduction: Ballooning instability

▶ It develops in the magnetosphere, taking into account the

�nite plasma pressure and curvature of the lines of force;

▶ Provided that plasma pressure drops rapidly with distance from

the Earth;

▶ For azimuthally small-scale modes (𝜆𝑎 ≪ 𝜆‖);

▶ Can be responsible for initiating sub-storms in the

magnetosphere.



2 Introduction: Unsolved problems

What was studied:

▶ Transition of Alfv�en modes to the ballooning instability mode

(Oberhagemann et. al., 2020);

▶ Transition of slow magnetosonic modes (SMS) to the

ballooning instability mode (Mazur et al., 2013)

What was not studied:

▶ Ñonnection between ballooning instability and MHD modes in

non-uniform plasma (Alfv�en, SMS);

▶ Dependence of development conditions for instability on the

radial wavelength (usually study in the limit 𝑘𝑟/𝑘𝑎 ≈ 0)



3 Problem statement

▶ Determine the conditions for the development of ballooning

instability depending on the plasma pressure and its gradient

for the �rst two harmonics.

▶ To study the dispersion relation of coupled Alfv�en and SMS

modes. To obtain the numerical dependence of the 𝛾
instability growth rate on the ratio of the radial and azimuthal

components of the wave vector 𝑘𝑟/𝑘𝑎 for a two-dimensionally

inhomogeneous magnetosphere model.

▶ To study the longitudinal structure of eigenfunctions of

coupled Alfv�en and SMS modes for the �rst two harmonics in

stable and unstable regimes.



4 Basic equations
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Φ � transverse potential

of the electric �eld:
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uniform plasma:
Φ — Alfvén mode
Θ — SMS mode
non-uniform plasma:
Φ — transverse electric field of
the wave
Θ — rarefaction/compression
of plasma
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5 Boundary conditions on the ionosphere

Characteristics of the ionosphere:

Ideal conductivity:

Φ|𝜃=𝜃±
= 0. (7)

High density, 𝜉‖ = 0:
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6 Solution methodology
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We solve on a certain 𝐿-shell (geostationary orbit, 𝐿 = 6.6)

Boundary value problem: 𝜔 � parameter, 𝑘21/𝑘
2
2 � eigenvalue.

As a result, we �nd the dependence of the value 𝑘21/𝑘
2
2 on 𝜔2.

Plasma parameters:

𝐷 � reverse pressure gradient at the equator, |∇𝑃 | = 𝑃/𝐷

𝛽 � ratio of plasma pressure to magnetic pressure at the equator.



7 General view of the solution solution

Two transparency regions (𝑘21 > 0): one for the Alfven mode, the

other for the SMS

Example of normal dispersion for SMS (wave, stability):



8 Changes in the structure of Θ𝑁 during the transition from
a stable to an unstable regime (from 𝑘𝑟 → ∞ to 0)

Рис.: 4.The ratio 𝑘2𝑟/𝑘
2
𝑎 for the fundamental harmonic as a function of

the square of the frequency 𝜔2. Changes in the structure of Θ1 from
magnetic latitude 𝜃. Harmonics (1) and (2) correspond to the SMS
modes (𝜔2 > 0). Harmonic (3) corresponds to the case 𝜔2 = 0 (the
instability boundary). Harmonics (4) and (5) correspond to the minimum
and maximum instability increment.



9 Increment of ballooning instability

The ballooning instability increment 𝛾 =
√
−𝜔2 reaches its maximum value at

𝑘𝑟 = 0, the ratio 𝑘𝑟/𝑘𝑎 tends to some critical value at 𝜔 ≈ 0.

Рис.: 3. Dependence of the instability increment 𝛾 on the ratio of the radial

and azimuthal wave numbers 𝑘𝑟/𝑘𝑎 for the fundamental 𝑁 = 1 (left) and

second 𝑁 = 2 (right) harmonics.



10 Plasma stability

Рис.: 4.Instability threshold of the fundamental 𝑁 = 1 (black) and
second 𝑁 = 2 (red) harmonics: scale of radial inhomogeneity of plasma
pressure 𝐷 depending on 𝛽 at the equator. The instability region (on the
𝐿 = 6.6 shell) lies below the corresponding curves.



11 Conclusion

▶ Ballooning instability can be considered as a continuation of the slow
magnetosonic mode in the sense that it develops on the same dispersion
branch. There is a significant difference in the eigenfunctions Φ and Θ in
stable and unstable cases. In the stable regime, Θ and Φ are real. In the
stable regime, Θ and Φ are real. In the unstable regime, both
eigenfunctions cannot be simultaneously real: they have a phase shift of
𝜋/2.

▶ It has been established that the largest instability increment corresponds
to the value 𝑘2

𝑟 = 0 and it approaches zero when the ratio 𝑘𝑟/𝑘𝑎 tends to
some critical value near 𝜔 ≈ 0.

▶ The conditions of ballooning instability are considered depending on the
radial non-uniformity of plasma pressure 𝐷 and the parameter 𝛽. At large
𝛽 the instability threshold is reached by smaller pressure gradients 𝐷. The
situation with large 𝛽 and small 𝐷 is typical for magnetic storms, when a
strong ring current develops in the magnetosphere.
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12 Unstable ballooning oscillations of the magnetic field
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]︂
− compression component; (12)

𝐵𝑟 = −𝑐𝑘𝑎
𝜔

𝜕Φ

𝜕𝑙
− radial component. (13)

Рис.: 7. Unstable ballooning oscillations of the radial 𝐵𝑟 and longitudinal
𝐵‖ magnetic field for the fundamental (left) and second (right)
harmonics at the maximum instability increment (𝑘𝑟 = 0).



13 Basic equations

𝑖𝜌𝜔2𝜉 = −∇(𝜉 · ∇𝑃 + 𝛾𝑃∇ · 𝜉)− 1

4𝜋
𝐽0 ×∇× [𝜉 ×𝐵0]+

+
1

4𝜋
𝐵0 ×∇× [∇× 𝜉 ×𝐵0],

(14)

Φ � transverse potential

of the electric �eld of the

Alfv�en wave:

𝐸 = 𝐸⊥ = −∇⊥Φ
(15)

Θ � proportional to the

divergence of the plasma

displacement:

Θ =

√
4𝜋𝛾𝑃

𝑐𝑘𝑎
∇ · 𝜉 (16)

uniform plasma:
Φ — Alfvén mode
Θ — SMS mode
non-uniform plasma:
Φ — transverse electric field of
the wave
Θ — rarefaction/compression
of plasma



14 ВКБ–приближение

If the azimuthal number 𝑘𝑎 ≫ 1
𝑃
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𝑅− radius of curvature of a field line

Mager P.N., Klimushkin D. Yu. Theory of azimuthally small-scale Alfvén waves in an

axisymmeric magnetosphere with small but finite plasma pressure. JGR. 2002.

Vol.107, P. 1356.



15 Basic equations: differential operators

Toroidal and poloidal di�erential operators:
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These operators de�ne the longitudinal structure of toroidal and

poloidal Alfv�en modes. The SMS operator:
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16 Boundary conditions on the ionosphere

Characteristics of the ionosphere:

Φ(𝑙‖) = ∓𝑖
𝑐2

4𝜋𝜔Σ±

𝜕Φ

𝜕𝑙‖
(25)

Ideal conductivity:

Φ|𝜃=𝜃±
= 0. (26)
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High density, 𝜉‖ = 0:
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