Ballooning instability and conditions for it development the Earth's magnetosphere

1-7 September 2024

Petrashchuk A.V. Klimushkin D.Yu. Mager P.N.

 290

(ロ) (個) (星) (星)

- \blacktriangleright It develops in the magnetosphere, taking into account the finite plasma pressure and curvature of the lines of force;
- ▶ Provided that plasma pressure drops rapidly with distance from the Earth;

メロメ メ御き メ君き メ君き

 290

- ▶ For azimuthally small-scale modes $(\lambda_a \ll \lambda_{\parallel})$;
- \triangleright Can be responsible for initiating sub-storms in the magnetosphere.

What was studied:

- ▶ Transition of Alfvén modes to the ballooning instability mode (Oberhagemann et. al., 2020);
- ▶ Transition of slow magnetosonic modes (SMS) to the ballooning instability mode (Mazur et al., 2013)

What was not studied:

- ▶ Connection between ballooning instability and MHD modes in non-uniform plasma (Alfvén, SMS);
- ▶ Dependence of development conditions for instability on the radial wavelength (usually study in the limit $k_r / k_a \approx 0$)

K ロ K K 御 K K R K X R K N R R

 $2Q$

- ▶ Determine the conditions for the development of ballooning instability depending on the plasma pressure and its gradient for the first two harmonics.
- ▶ To study the dispersion relation of coupled Alfven and SMS modes. To obtain the numerical dependence of the γ instability growth rate on the ratio of the radial and azimuthal components of the wave vector k_r / k_a for a two-dimensionally inhomogeneous magnetosphere model.
- ▶ To study the longitudinal structure of eigenfunctions of coupled Alfvén and SMS modes for the first two harmonics in stable and unstable regimes.

4 Basic equations

$$
\frac{k_1^2}{k_2^2}\hat{L}_T(\omega)\Phi + \hat{L}_P(\omega)\Phi - \sqrt{\frac{g_1}{g_2}}\frac{8\pi}{B^2R}\frac{\partial P}{\partial L}\Phi = \sqrt{g_1}\frac{2\omega}{R}\frac{V_S}{V_A}\Theta,\tag{1}
$$

$$
\hat{L}_S(\omega)\Theta = \sqrt{g_1} \frac{2\omega}{R} \frac{V_S}{V_A} \Phi.
$$
\n(2)

 Φ - transverse potential of the electric field:

 Θ -proportional to the divergence of the plasma displacement:

 $E = E_{\perp} = -\nabla_{\perp} \Phi$ (3)

uniform plasma: Φ — Alfvén mode
Θ — SMS mode non-uniform plasma: Φ — transverse electric field of the wave Θ — rarefaction/compression of plasma

 $\Theta =$ √ $4\pi\gamma P$ $\frac{1}{ck_a} \nabla \cdot \boldsymbol{\xi}$ (4) Differential operators: $\hat{L}_T(\omega) = \frac{\partial}{\partial l_\parallel}$ $\sqrt{g_2}$ \overline{g}_1 ∂ $\frac{\partial}{\partial l_\parallel}$ + $\sqrt{\frac{g_2}{g_1}}$ \overline{g}_1 ω^2 $\frac{\omega}{V_A^2},$ (5) $\hat{L}_P(\omega) = \frac{\partial}{\partial l_{\parallel}}$ $\sqrt{g_1}$ $\overline{g_2}$ ∂ $\frac{\partial}{\partial l_\parallel}$ + $\sqrt{\frac{g_1}{g_2}}$ $\overline{g_2}$ ω^2 $\frac{\omega}{V_A^2},$ (□) (@) (}) (}<mark>(6)}</mark>

 298

Characteristics of the ionosphere: Ideal conductivity:

$$
\Phi|_{\theta=\theta_{\pm}}=0.\tag{7}
$$

High density,
$$
\xi_{\parallel} = 0
$$
:
\n
$$
\frac{\partial \Theta}{\partial l_{\parallel}}\Big|_{\theta = \theta_{\pm}} = 0.
$$
\n(8)
\n
$$
\frac{\omega^2}{V_S^2} \frac{\omega}{k_a c} = -\frac{\omega}{\sqrt{4\pi \gamma P}} \frac{\partial \Theta}{\partial l_{\parallel}}
$$
\n(9)

メロト メ御り メミト メミト $2Q$ 活

6 Solution methodology

$$
\frac{k_1^2}{k_2^2}\hat{L}_T(\omega)\Phi + \hat{L}_P(\omega)\Phi - \sqrt{\frac{g_1}{g_2}}\frac{8\pi}{B^2R}\frac{\partial P}{\partial L}\Phi = \sqrt{g_1}\frac{2\omega}{R}\frac{V_S}{V_A}\Theta, \quad (10)
$$

$$
\hat{L}_S(\omega)\Theta = \sqrt{g_1} \frac{2\omega}{R} \frac{V_S}{V_A} \Phi.
$$
\n(11)

We solve on a certain L-shell (geostationary orbit, $L = 6.6$) Boundary value problem: ω — parameter, k_1^2/k_2^2 — eigenvalue. As a result, we find the dependence of the value k_1^2/k_2^2 on ω^2 . Plasma parameters:

 D – reverse pressure gradient at the equator, $|\nabla P| = P/D$ β – ratio of plasma pressure to magnetic pressure at the equator.

> K ロ ▶ (K @) | K 글) | K 글) | [글] 299

7 General view of the solution solution

Two transparency regions $(k_1^2>0)$: one for the Alfven mode, the other for the SMS

Example of normal dispersion for SMS (wave, stability):

8 Changes in the structure of Θ_N during the transition from a stable to an unstable regime (from $k_r \to \infty$ to 0)

Рис.: 4. The ratio k_r^2/k_a^2 for the fundamental harmonic as a function of the square of the frequency ω^2 . Changes in the structure of Θ_1 from magnetic latitude θ . Harmonics (1) and (2) correspond to the SMS modes $(\omega^2>0)$. Harmonic (3) corresponds to the case $\omega^2=0$ (the instability boundary). Harmonics (4) and (5) correspond to the minimum and maximum instability increment.K ロ ▶ (K@) ▶ (B) (X B) │ B

 $2Q$

9 Increment of ballooning instability

The ballooning instability increment $\gamma=\sqrt{-\omega^2}$ reaches its maximum value at $k_r = 0$, the ratio k_r / k_a tends to some critical value at $\omega \approx 0$.

Рис.: 3. Dependence of the instability increment γ on the ratio of the radial and azimuthal wave numbers k_r / k_a for the fundamental $N = 1$ (left) and second $N = 2$ (right) harmonics.

メロメ メタメ メモメ メモメ

 $2Q$

重

10 Plasma stability

Puc.: 4 Instability threshold of the fundamental $N = 1$ (black) and second $N = 2$ (red) harmonics: scale of radial inhomogeneity of plasma pressure D depending on β at the equator. The instability region (on the $L = 6.6$ shell) lies below the corresponding curves.

- ▶ Ballooning instability can be considered as a continuation of the slow magnetosonic mode in the sense that it develops on the same dispersion branch. There is a significant difference in the eigenfunctions Φ and Θ in stable and unstable cases. In the stable regime, Θ and Φ are real. In the stable regime, Θ and Φ are real. In the unstable regime, both eigenfunctions cannot be simultaneously real: they have a phase shift of $\pi/2$.
- ▶ It has been established that the largest instability increment corresponds to the value $k_r^2=0$ and it approaches zero when the ratio k_r/k_a tends to some critical value near $\omega \approx 0$.
- ▶ The conditions of ballooning instability are considered depending on the radial non-uniformity of plasma pressure D and the parameter β . At large β the instability threshold is reached by smaller pressure gradients D . The situation with large β and small D is typical for magnetic storms, when a strong ring current develops in the magnetosphere.

Thank you attention !

1-7 September 2024

メロト メ御り メミト メミト È つくい

12 Unstable ballooning oscillations of the magnetic field

$$
B_{\parallel} = \frac{ck_a}{\omega} \left[B \frac{V_S^2}{V_A^2} \nabla \cdot \xi + \frac{1}{\sqrt{g_1}} \frac{4\pi}{B^2} \frac{\partial P}{\partial L} \Phi \right] - \text{compression component}; \quad (12)
$$

$$
B_r = -\frac{ck_a}{\omega} \frac{\partial \Phi}{\partial l} - \text{radial component.} \quad (13)
$$

Puc.: 7. Unstable ballooning oscillations of the radial B_r and longitudinal B_{\parallel} magnetic field for the fundamental (left) and second (right) harmonics at the maximum instability increment $(k_r = 0)$.

(ロ) (個) (星) (星)

 $2Q$

活

13 Basic equations

$$
i\rho\omega^2\xi = -\nabla(\xi \cdot \nabla P + \gamma P \nabla \cdot \xi) - \frac{1}{4\pi}J_0 \times \nabla \times [\xi \times B_0] + \frac{1}{4\pi}B_0 \times \nabla \times [\nabla \times \xi \times B_0],
$$
\n(14)

 Φ - transverse potential of the electric field of the Alfvén wave:

$$
E=E_\perp=-\nabla_\perp\Phi\qquad(15)
$$

uniform plasma: Φ — Alfv´en mode Θ — SMS mode non-uniform plasma: Φ — transverse electric field of the wave Θ — rarefaction/compression of plasma

 Θ – proportional to the divergence of the plasma displacement:

$$
\Theta = \frac{\sqrt{4\pi\gamma P}}{ck_a}\nabla\cdot\boldsymbol{\xi}
$$
 (16)

14 ВКБ–приближение

If the azimuthal number $k_a\gg {1\over F}$ $\frac{\partial P}{\partial L}$:

$$
\Phi \propto \Phi_N(l_{\parallel}) \exp[i \int k_1 dL^{'}]
$$

$$
\frac{k_1^2}{k_2^2}\hat{L}_T(\omega)\Phi + \hat{L}_P(\omega)\Phi - \sqrt{\frac{g_1}{g_2}}\frac{8\pi}{B^2R}\frac{\partial P}{\partial L}\Phi = \sqrt{g_1}\frac{2\omega}{R}\frac{V_S}{V_A}\Theta, \quad (17)
$$

$$
\hat{L}_S(\omega)\Theta = \sqrt{g_1} \frac{2\omega}{R} \frac{V_S}{V_A} \Phi.
$$
\n(18)

K ロ ▶ (K@) ▶ (K 할) (K 할) () 할

 299

$$
V_A = \frac{B}{\sqrt{4\pi\rho}}, \quad V_S = \sqrt{\frac{\gamma P}{\rho}}, \quad V_C = \frac{V_A V_S}{\sqrt{V_A^2 + V_S^2}}.
$$
 (19)

 R – radius of curvature of a field line

Mager P.N., Klimushkin D. Yu. Theory of azimuthally small-scale Alfvén waves in an axisymmeric magnetosphere with small but finite plasma pressure. JGR. 2002. Vol.107, P. 1356.

15 Basic equations: differential operators

Toroidal and poloidal differential operators:

$$
\hat{L}_T(\omega) = \frac{\partial}{\partial l_{\parallel}} \sqrt{\frac{g_2}{g_1}} \frac{\partial}{\partial l_{\parallel}} + \sqrt{\frac{g_2}{g_1}} \frac{\omega^2}{V_A^2},\tag{20}
$$

$$
\hat{L}_P(\omega) = \frac{\partial}{\partial l_{\parallel}} \sqrt{\frac{g_1}{g_2}} \frac{\partial}{\partial l_{\parallel}} + \sqrt{\frac{g_1}{g_2}} \frac{\omega^2}{V_A^2},\tag{21}
$$

These operators define the longitudinal structure of toroidal and poloidal Alfvén modes. The SMS operator:

$$
\hat{L}_S(\omega) = \frac{\partial}{\partial l_{\parallel}} V_S^2 \sqrt{g_1 g_2} \frac{\partial}{\partial l_{\parallel}} + \sqrt{g_1 g_2} \frac{V_S^2}{V_C^2} \omega^2.
$$
 (22)

$$
g_1 = \frac{\cos^6 \theta}{1 + 3\sin^3 \theta}, \ g_2 = L^2 \cos^6 \theta.
$$
 (23)

$$
\partial l_{\parallel} = \sqrt{g_3} \partial x^3 = L \cos \theta \sqrt{1 + 3 \sin^3 \theta} \partial \theta. \tag{24}
$$

16 Boundary conditions on the ionosphere

Characteristics of the ionosphere:

$$
\Phi(l_{\parallel}) = \mp i \frac{c^2}{4\pi\omega\Sigma_{\pm}} \frac{\partial \Phi}{\partial l_{\parallel}}
$$
\n(25)

Ideal conductivity:

$$
\Phi|_{\theta=\theta_{\pm}}=0.\tag{26}
$$

$$
\frac{\omega^2}{V_S^2} \frac{\omega}{k_a c} = -\frac{\omega}{\sqrt{4\pi\gamma P}} \frac{\partial \Theta}{\partial l_{\parallel}} \tag{27}
$$

High density, $\xi_{\parallel} = 0$:

$$
\left. \frac{\partial \Theta}{\partial l_{\parallel}} \right|_{\theta = \theta_{\pm}} = 0. \tag{28}
$$

K ロ ト K 御 ト K 君 ト K 君 ト

 $2Q$

活