Секция С. Диагностика естественных неоднородных сред и математическое моделирование. БШФФ-2024. С. 251–252.

УДК 533.933

DOI: 10.62955/0135-3748-2024-251

ИССЛЕДОВАНИЕ РАДИАЛЬНОГО РАСПРЕДЕЛЕНИЯ ИСТОЧНИКОВ ЭУФ ИЗЛУЧЕНИЯ В ЛАЗЕРНОЙ ПЛАЗМЕ С ПОМОЩЬЮ ПРЕОБРАЗОВАНИЯ АБЕЛЯ

В.Е. Гусева, А.Н. Нечай, А.А. Перекалов, Н.И. Чхало

Институт физики микроструктур Российской академии наук, Нижний Новгород, Россия, valeriegus@ipmras.ru

STUDYING RADIAL DISTRIBUTION OF EUV RADIATION SOURCES IN LASER PLASMA BY ABELE TRANSFORM METHODS

V.E. Guseva, A.N. Nechay, A.A. Perekalov, N.I. Chkhalo

Institute for Physics of Microstructures RAS, Nizhniy Novgorod, Russia, valeriegus@ipmras.ru

Аннотация. В работе представлены результаты обработки изображений лазерной искры, полученных с помощью ЭУФ микроскопа, работающего на длине волны 11.25 нм, при возбуждении инертных газов (Ar, Kr, Xe) излучением Nd:YAG лазера ($\lambda = 1064$ нм, $\tau_{имп} = 4$ нс и $E_{имп} = 0.8$ Дж). Газовая мишень формировалась при истечении струй газа в вакуумную камеру из конического сверхзвукового сопла с $d_{kp} = 500$ мкм, l = 5 мм, $\alpha/2 = 4.5^{\circ}$ при давлении на входе в сопло 3–10 бар. Образующаяся лазерная плазма имеет температуру порядка 10⁶ К. В работе описан метод получения и обработки изображений лазерной плазмы с помощью обратного преобразования Абеля. Показаны особенности радиального распределения интенсивности при возбуждении различных газовых мишеней.

Ключевые слова: лазерная плазма, ЭУФ излучение, преобразование Абеля.

Abstract. This paper presents the results of processing images of a laser spark obtained using an EUV microscope operating at a wavelength of 11.25 nm when excitation of inert gases (Ar, Kr, Xe) by Nd:YAG laser radiation ($\lambda = 1064$ nm, $\tau_{pulse} = 4$ ns and $E_{pulse} = 0.8$ J). The gas target was formed by the flow of gas jets into a vacuum chamber from a conical supersonic nozzle with $d_{cr} = 500 \mu m$, l = 5 mm, $\alpha/2 = 4.5^{\circ}$ under a pressure at the nozzle inlet of 3-10 bar. The resulting laser plasma has a temperature of the order of 10^{6} K. The paper describes a method for obtaining and processing images of laser plasma using the inverse Abel transform. The features of the radial intensity distribution during excitation of different gas targets are shown.

Keywords: laser plasma, EUV radiation, Abel transform.

введение

Известно, что лазерная плазма является одним из наиболее перспективных источников экстремального ультрафиолетового (ЭУФ) излучения. Характеристики лазерно-плазменного источника исследуются достаточно длительное время. Однако процессы, происходящие в лазерной плазме, попрежнему можно отнести к малоизученным. Большое количество новой информации можно получить, исследуя изображение лазерных искр в ЭУФ спектральном диапазоне.

В данной работе исследовалось радиальное распределение источников ЭУФ излучения плазмы, образованной при возбуждении газоструйных мишеней инертных газов импульсным излучением Nd:YAG лазера. Изображения лазерной искры были получены на длине волны 11.25 нм с помощью микроскопа с пятикратным увеличением, основанном на объективе Шварцшильда. Для выяснения радиального распределения интенсивности ЭУФ излучения в области искры было использовано обратное преобразование Абеля [Dribinski et al., 2002; Bockasten, 1961]. Возможность использования данного метода обусловлена цилиндрической симметрией лазерной искры относительно оси лазерного луча.

ОПИСАНИЕ ЭКСПЕРИМЕНТА

Схема экспериментальной установки представлена на рис. 1. Работа осуществляется следующим образом. Излучение Nd:YAG лазера 1 с длительностью импульса (4 нс, 0.8 Дж) проходит делительную пластинку 2, отклоняющую часть излучения в калориметр 3. Проходящее излучение отклоняется призмой 4 и через вводное окно 5 попадает в объем вакуумной камеры 6, где фокусируется с помощью линзы 7 на струе газа, истекающей из сверхзвукового конического сопла 8 ($d_{kp} = 500$ мкм, 1 = 5мм, $\alpha/2 = 4.5^{\circ}$). Давление газа на входе в сопло варьировалось от 3 до 10 бар. В области пробоя мишени образуется лазерная плазма 9. С помощью рентгеновского микроскопа 10, работающего на длине волны 11.25 нм, были получены изображения лазерных искр. Основным оптическим элементом микроскопа является двухзеркальный сферический объектив Шварципильда. Объектив состоит из двух зеркал — выпуклого зеркала 11 и вогнутого зеркала 12. После прохождения объектива излучение детектируется с помощью СМОЅ матрицы 13.

Рис. 1. Схема экспериментальной установки

ОПИСАНИЕ МЕТОДА ПРЕОБРАЗОВАНИЯ

Для лазерной искры существует цилиндрическая симметрия относительно оси лазерного пучка [Dribinski et al., 2002]. В таких случаях 3D изображение искры является функцией только двух координат в цилиндрической системе и представляет собой радиальное распределение источников ЭУФ излучения I = I(r, z). Пусть P(x, z) это двумерная проекция I(r, z) на плоскость детектора (x, z), где ось х перпендикулярна оси z. Эти две функции связаны интегралом Абеля:

$$P(x,z) = 2 \int_{|x|}^{\infty} \frac{rI(r,z)}{\sqrt{r^2 - x^2}} dr.$$

Полученная экспериментально проекция P(x, z) является 2D массивом P с элементами, определенными на двумерной сетке 2048×2048 пикселей (1 пиксель = 6.5 мкм). Интересующей величиной является изображение I(r, z), которое можно получить непосредственно путем вычисления обратного преобразования Абеля:

$$I(r,z) = -\frac{1}{\pi} \int_r^{\infty} \frac{\left[\frac{dP(x,z)}{dx}\right]}{\sqrt{x^2 - r^2}} dx.$$

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В эксперименте были получены изображения лазерной искры на газоструйных мишенях (Ar, Kr, Xe). Изображение искры аргона (p = 5 бар) представлено на рис. 2a.

На снимке лазерный луч направлен снизу и является осью симметрии. Размеры указаны в пикселях. Штрихованные линии соответствуют диаметру лазерного пучка в области фокуса — 66 мкм. По оси у фокус расположен на 615 пикс (см. рис. 2а). Следует отметить, что ~70 % энергии лазерного пучка сосредоточено в диаметре 66 мкм. На рис. 26 приведено изображение после преобразования Абеля, представляющее собой радиальное распределение источников излучения в искре на длине волны 11.25 нм. Черные линии выделяют полосу, в которой могут наблюдаться значительные погрешности [Bockasten, 1961], связанные с используемым математическим преобразованием. Эта область составляет около 6 % и была вручную сглажена на изображении. Видно, что для радиального распределения интенсивности в искре аргона характерно наличие двух центров излучения в продольном срезе искры. Следовательно, искра аргона представляет собой полый плазменный цилиндр.

Для определения зависимости распределения интенсивности в лазерной искре от давления газа достаточно анализа профиля поперечного среза при одном у. Профили были сняты при давлениях газа на входе в сопло 3, 5, 8 и 10 бар при возбуждении мишени аргона и представлены на рис. 3. Мелкими штриховыми линиями выделена область, составляющая ~6 %, в которой могут наблюдаться значительные математические погрешности. Крупными штрихами показан диаметр лазерного луча в области фокуса (66 мкм).

Рис. 3. Поперечные профили распределения центров ЭУФ излучения в искре Ar

Видно, что при изменении давления газа вид распределения центров излучения на длине волны 11.25 нм сохраняется.

Были также получены радиальные распределения интенсивности излучения при возбуждении струй криптона и ксенона. Радиальное распределение интенсивности для искры ксенона, подобно искре аргона, является полым цилиндром, однако со значительно более толстыми стенками. Распределение интенсивности для криптона имеет вид, подобный распределению Гаусса.

ЗАКЛЮЧЕНИЕ

В работе представлены результаты обработки экспериментальных данных — получены радиальные распределения интенсивности излучения в лазерной плазме Ar, Kr, Xe при регистрации изображений искр с помощью микроскопа, работающего на длине волны 11.25 нм. Показано, что искры различных газов имеют характерные особенности в распределении источников излучения, связанные с отличиями в физике плазменных процессов.

Работа была выполнена в рамках гранта РНФ № 21-72-30029.

СПИСОК ЛИТЕРАТУРЫ

Bockasten K. Transformation of observed radiances into radial distribution of the emission of a plasma // JOSA. 1961. V. 51, N 9. P. 943–947.

Dribinski V. et al. Reconstruction of Abel-transformable images: The Gaussian basis-set expansion Abel transform method // Rev. Sci. Instrum. 2002. V. 73, N 7. P. 2634-2642.