РАСШИРЕНИЕ МЕТОДА СПЕКТРОГРАФИЧЕСКОЙ ГЛОБАЛЬНОЙ СЪЕМКИ

И.И. Ковалев, С.В. Олемской, В.Е. Сдобнов

Институт солнечно-земной физики СО РАН, Иркутск, Россия ivankov@mail.iszf.irk.ru

EXTENSION OF THE SPECTROGRAPHIC GLOBAL SURVEY METHOD

I.I. Kovalev, S.V. Olemskoy, V.E. Sdobnov

Institute of Solar-Terrestrial Physics SB RAS, Irkutsk, Russia ivankov@mail.iszf.irk.ru

Аннотация. Модифицированным методом спектрографической глобальной съемки проведено разделение вариаций космических лучей на составляющие межпланетного, магнитосферного и атмосферного происхождения. По данным наземных наблюдений интенсивности космических лучей получены вариации изотропного потока, питч-угловой анизотропии первичных космических лучей в межпланетном пространстве, изменения планетарной системы жесткостей геомагнитного обрезания за каждый час наблюдений, а также температура атмосферы в пункте наблюдения заряженных компонент космических лучей в мае 2005 и августе 2010 г.

Ключевые слова: космические лучи, нейтронные мониторы, мюонные телескопы, космическая погода

Abstract. We separated cosmic ray variations into interplanetary, magnetospheric and atmospheric components by the modified spectrographic global survey method. Using data on ground-level cosmic ray intensity variations, we obtained isotropic flux variations, pitch angle anisotropy of primary cosmic rays in interplanetary space, changes in the system of geomagnetic cut-off rigidity at each hour of observations, as well as atmospheric temperature over the detection point of charged cosmic ray components in May 2005 and August 2010.

Keywords: cosmic rays, neutron monitors, muon telescopes, space weather

ВВЕДЕНИЕ

Наземные детекторы космических лучей (КЛ), которыми оснащена мировая сеть станций, регистрируют интегральную интенсивность вторичных компонент. Поэтому перед исследователями встает задача связать получаемые данные наземных измерений КЛ с параметрами среды и первичного потока КЛ. Для ее решения необходима разработка специальных методов. В частности, в ИСЗФ СО РАН был создан метод спектрографической глобальной съемки (СГС) [Dvornikov et al., 1983, Dvornikov, Sdobnov, 2002], в основу которого заложена модель модуляции КЛ крупномасштабными электромагнитными полями СВ [Dvornikov et al, 2013].

Метод СГС использует данные мировой сети нейтронных мониторов (НМ) и мезонных телескопов (МТ). Привлечение данных МТ позволяет расширить энергетический диапазон исследуемых вариаций КЛ и повысить точность получаемых методом СГС величин [Янчуковский и др., 2010]. Однако
использование данных МТ связано с трудностями,
связанными с введением поправок на температурный эффект [Дорман, 1957], что требует знание
температурного разреза атмосферы в пункте наблюдения заряженных компонент.

Разработанная нами модификация метода СГС позволяет обрабатывать данные МТ без введения поправок на температуру, а также получать информацию о температуре атмосферы над его местоположением. Все это повышает информативность метода СГС при исследовании вариаций КЛ.

МЕТОД СГС И АТМОСФЕРНЫЕ ВАРИАЦИИ

Метод СГС сводится к решению системы уравнений, которая записывается в символическом виде

 $\Delta I_{
m экc} = \Delta I_{
m магн} + \Delta I_{
m межп}$, где левая часть равенства представляет экспериментально измеряемую амплитуду вариаций, обусловленную суммарным эффектом составляющих магнитосферного и межпланетного происхождения.

В данном виде метод СГС подходит для работы с данными детекторов КЛ, исправленными на метеоэффекты.

Для работы с данными МТ, не исправленными на температурный эффект, необходимо учесть вариации температурного характера, т. е включить третий член $\Delta I_{\rm экc} = \Delta I_{\rm атм} + \Delta I_{\rm магн} + \Delta I_{\rm межп}$. В данной записи это слагаемое можно представить в виде

$$\frac{\Delta I}{I}(T)_{\text{\tiny TEMII}} = \int_{0}^{h} V(T_0, h_0, h) \Delta T(h) dh = \sum_{i=1}^{n} v_i \Delta T_i \qquad (1)$$

где V — функция плотности температурного коэффициента, ΔT_i — функция вариаций температуры атмосферы на уровне атмосферного давления h_i . К данному интегралу можно применить теорему о среднем, упростив температурные вариации до одного члена [Янчуковский, 2010]:

$$\frac{\Delta I}{I}(T)_{\text{temp}} = \overline{V}(T_0, h_0, h) \int_0^h \Delta T(h) dh = v_{\text{am}} \Delta T_{\text{am}}.$$
 (2)

Здесь $v_{\rm am}$ — плотность температурного коэффициента, усредненная по высоте, а $\Delta T_{\rm am}$ — изменение среднемассовой температуры

$$\Delta T_{am} = \sum_{i=1}^{n} \Delta T_i \Delta h_i / \sum_{i=1}^{n} \Delta h_i$$
, где n — количество изобарических слоев, ΔT_i — изменение температуры на изобаре i , Δh_i — разность давлений между изобарами i и i – 1 .

Поскольку атмосферное давление, являющееся верхним пределом интегрирования, не является по-

стоянным, имеет смысл выделить из интеграла (1) вклад слоя переменной массы, а к оставшемуся интегралу применить теорему о среднем. Таким образом, уравнение (2) приобретает вид:

$$\frac{\Delta I_{c}^{i}}{I_{c}^{i}}(h_{l}) = -\Delta \overline{R}_{c} W_{c}^{i}(\overline{R}_{c}, h_{l}) + \\
+ \sum_{i=0}^{10} \sum_{k=1}^{m_{n}} A_{jk} B_{jkc}^{il} + v_{GL}^{c} \Delta T_{GL}^{MT} (h^{MT} - 950) + v_{AM}^{c} \Delta T_{AM}^{MT}.$$
(3)

Здесь $h^{\rm MT}$ — атмосферное давление в пункте регистрации мюонов (в мбар), v — температурные коэффициенты (считаются нулем для нейтронных мониторов), ΔT —изменения температуры слоя переменной массы GL и среднемассовой температуры AM. Такой подход был задействован для Новосибирского мюонного телескопа, для которого доступны наборы температурных коэффициентов [Янчуковский, 2018].

При этом для обеспечения достаточности системы уравнений вида (3) необходимо, чтобы станции КЛ регистрировали не менее двух заряженных компонент КЛ с различающимися коэффициентами связи.

ДАННЫЕ

По данным наземных наблюдений КЛ на мировой сети станций, используемой как единый многоканальный прибор, с помощью модифицированного метода СГС мы разделили вариации КЛ межпланетного, магнитосферного и атмосферного происхождения в периоды 1–31 мая 2005 г. (характеризуется форбуш-эффектом и сильной геомагнитной бурей) и 1-31 августа 2010 г. с серией форбуш-понижений и умеренными геомагнитными возмущениями. В анализе использовались также данные МТ в Новосибирске [http://cosmrays.ipgg.sbras.ru], исправленные на давление, а именно ионизирующая и вертикальная компоненты и компоненты, регистрируемые под зенитными углами 30°, 40°, 50°. Амплитуды модуляции для периода 1-31 мая 2005 г. отсчитывались от фонового уровня 24.05.2005 г, а для периода 1-31 августа 2010 г. — от фонового уровня 01.08.2010 г.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

На рис. 1, a, δ сверху вниз показаны модуль ММП B, эклиптические долгота ψ_0 и широта λ_0 ориентации ММП, изотропная компонента $\Delta J/J$, амплитуды 1-й A1 и 2-й A2 гармоник питч-угловой анизотропии для частиц с жесткостью 4 ГВ, изменения ЖГО $\Delta R_{\rm c}$ в мае 2005 г. и августе 2010 г. в Иркутске, временной ход вариаций интенсивности на станции НМ OULU $\Delta I/I$, временной ход Dst-индекса.

Можно отметить следующее.

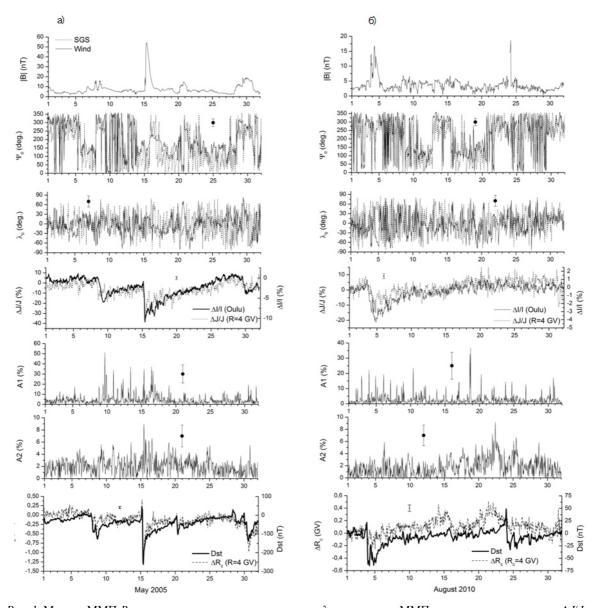
• Хорошее согласие между результатами расчетов и данными ориентации ММП (коэффициент корреляции 0.76). Стоит упомянуть, что КА производит измерение направления ММП в одной точке, в то время как КЛ проходят через некоторую область в космическом пространстве. Следовательно,

данные об ориентации ММП КЛ, полученные по наблюдениям КЛ, усреднены по этой области.

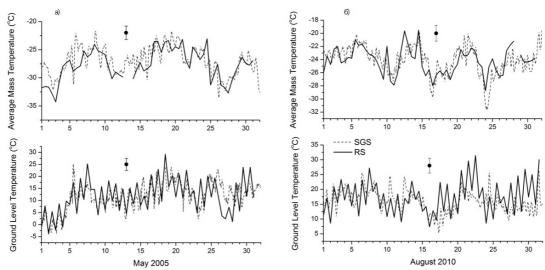
- Амплитуда анизотропии достигает 40–60 % для первой и 5–8 % для второй гармоник питчугловой анизотропии в периоды возмущений. Повышение амплитуды первой гармоники питчугловой анизотропии свидетельствует о вхождении Земли в область с повышенной по сравнению с окружающей напряженностью ММП [Dvornikov et al., 1983, Dvornikov, Sdobnov, 1997]. Повышенная амплитуда второй гармоники питч-угловой анизотропии КЛ указывает на то, что в этот момент Земля находится в петлеобразной структуре ММП [Richardson et al., 2000].
- Изменения ЖГО и *Dst*-индекс коррелируют в периоды возмущений. Коэффициент корреляции составляет 0.96.

На рис. 2 указан временной ход среднемассовой (сверху) и приземной (снизу) температуры в мае 2005 и августе 2010 г. Черная штриховая линия — наши расчеты, толстая черная линия — данные радиозондирования. Видно хорошее согласие между данными.

Некоторое расхождение в расчетных и наблюдаемых данных по температуре может быть обусловлено несколькими факторами: низким качеством данных МТ в отдельные моменты времени, а также разными метеоусловиями в пунктах проведения радиозондирования и регистрации жесткой компоненты (расстояние между пунктами около 40 км).


На рисунках приведены погрешности рассчитанных методом СГС величин, вызванные статистической точностью используемых данных наблюдений, без учета ошибок моделей и аппроксимаций.

выводы


В работе представлена модификация метода СГС для работы с данными МТ, не исправленными на температуру.

Показано следующее:

- Возможность разделения вариаций КЛ на вариации, обусловленные изменениями первичного спектра КЛ (которые отражают изменения в электромагнитных свойствах межпланетной среды); вариации, обусловленные магнитосферными токовыми системами; вариации, обусловленные изменениями температуры атмосферы.
- Возможность использования для анализа данных наблюдений нестабильных заряженных компонент КЛ без исправления этих данных на температурный эффект.
- Возможность получения температурных характеристик атмосферы в пунктах регистрации заряженных компонент вторичных КЛ. При этом в таких пунктах должно быть несколько каналов регистрации заряженных компонент с различными температурными коэффициентами.

Puc.~1. Модуль ММП B, эклиптические долгота ψ_0 и широта λ_0 ориентации ММП, изотропная компонента $\Delta J/J$ и вариации интенсивности НМ в Оулу, 1-я A1 и 2-я A2 гармоники питч-угловой анизотропии для частиц с жесткостью 4 ГВ, а также изменение ЖГО ΔR_c и Dst-индекс за май 2005 (a) и август 2010 г. (a)

 $Puc.\ 2$. Временной ход среднемассовой (сверху) и приземной (снизу) температуры на станции КЛ в Новосибирске за май 2005 (а) и август 2010 г. (б). Сплошной линией отмечены данные аэрологического радиозондирования, штриховой — данные расширенного СГС

СПИСОК ЛИТЕРАТУРЫ

Дорман Л.И. *Вариации космических лучей*. М.:, Государственное изд-во технико-теоретической литературы, 1957.

Дворников В.М., Крестьянников Ю.Я., Сергеев А.В. Определение изменений среднемассовой температуры атмосферы по данным интенсивности космических лучей. *Геомагнетизм и аэрономия*. 1976. Т. 16, № 5. С. 923.

Янчуковский В.Л., Кузьменко В.С., Анцыз Е.Н. Результаты мониторинга космических лучей с помощью многоканального комплекса. *Солнечно-земная физика*. 2010. Вып. 16. С. 110–112.

Янчуковский В.Л., Кузьменко В.С. Атмосферные эффекты мюонной компоненты космических лучей. Солнечно-земная физика. 2018. Т. 4, № 3. С. 95–102. DOI: 10.12737/szf-43201810.

Belov A. et al. The Global Survey Method applied to ground-level cosmic ray measurements. *Solar Phys.* 2018. Vol. 293. P. 68.

Dvornikov V.M., Sdobnov V.E., Sergeev A.V. *Proc.* 18th ICRC. 1983. Bangalore. India. Vol. 3. P. 249.

Dvornikov \overline{V} .M., Sdobnov V.E. IJGA . 2002. Vol. 3, no. 3. P. 217.

Dvornikov V.M. et al. Diagnostics of the electromagnetic characteristics of the interplanetary medium based on cosmic ray effects. *Geomagnetism and Aeronomy*. 2013. Vol. 53, no. 4. P. 430–440. DOI: 10.1134/S0016793213040075.

Richardson I.G., Dvornikov V.M., Sdobnov V.E., Cane H.V. Bidirectional particle flows at cosmic ray and lower (~1 MeV) energies and their association with interplanetary coronal mass ejections/ejecta. *J. Geophys. Res.* 2000. Vol. 105A. P. 12579–12591.