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AHHoOTanmsl. Pe3oHaHCHOE B3aMMOJEHCTBHE NEKTPOHOB CO CBUCTOBBIMM BOJIHAMH 3HAYMTENBHO BIMSIET Ha JUHAMUKY ILIa3MeEH-
HBIX CUCTEM 32 CYET PACCEsSHUs 10 MUTY-YIIy U YCKOPEHUs! AIEKTPOHOB. IIpy 10CTaTOYHO IHPOKOM CLIEKTPE BOJIH WM CHIBHON HEOI-
HOPOJIHOCTH BHEIITHEro MAarHUTHOTO TOJI1 JMHAMUKA IOJOOHBIX CHCTEM ITOIUHSCTCS KBa3WIMHEHHOH Teopun. OHAKO B OKOJIO3EM-
HOM IUTa3MEHHOM IIPOCTPAHCTBE PETYISIPHO HAOJIFOA0TCS] BRICOKOMHTEHCUBHBIE CBICTOBBIE BOJIHBI, KOTOPBIE HE MOTYT OBITh OIMCAHbI
JIAHHBIM NPHOJIVDKEHNEM BCIISCTBHE HAIMYMS HEJIMHEHHBIX pe30HAHCHBIX d(deKToB. B 3T0it pabote paccmarpuBaeTcst IpUMEHEHHE
1 dy3MOHHOM TEOPHH IS TAKUX UHTEHCHBHBIX BOJIH C y4€TOM BOJIHOBBIX MOJYJIALIMH, KOTOPBIC 3HAYUTENBHO HOAABISIOT 3(Q(DEKTHI,
CBSI3aHHBIE C HEJTMHENHBIM PE30HAHCHBIM B3aUMOJEHCTBUEM.

KuroueBbie ciioBa: PE30HAHCHOE B3aMMOJICICTBHE BOJIH U 3JICKTPOHOB, CBUCTOBBIC BOJIHBI, TCOPUSL III/I(i)(i)y?)I/II/I, KBa3WJIMHEHHAs
Teopus, HEJIMHEWHOE PE30HAaHCHOE B3aMMOJICICTBHE.

Abstract. Resonant electron interaction with whistler-mode waves significantly affects the dynamics of plasma systems
through pitch-angle scattering and particle acceleration. With a sufficiently wide wave spectrum or a strong inhomogeneity of the
background magnetic field, the dynamics of such systems obey the quasi-linear theory. But many of the observed high-intensity
waves cannot be described by this approximation due to the presence of nonlinear effects. In this paper, we consider the applica-
tion of diffusion theory for waves of this type, taking into account wave modulations, which significantly suppresses the effects

associated with nonlinear interaction.

Keywords: resonant wave-particle interaction, whistler-mode waves, diffusion theory, quasi-linear theory, nonlinear resonant in-

teraction.

INTRODUCTION

Resonant electron interaction with whistler-mode
waves is one of the main drivers of electron pitch-angle
scattering and acceleration in various space plasma sys-
tems, e.g. solar wind [Tong et al., 2019] shock waves [Hull
et al., 2012; Wilson et al., 2013; Oka et al., 2017; Page et
al., 2021], planetary radiation belts [Menietti et al., 2002],
and magnetic reconnection regions [Deng, Matsumoto,
2001]. The basic theoretical framework for description of
such interaction is the quasi-linear model [Vedenov et al.,
1962; Drummond, Pines, 1962; Andronov, Trakhtengerts,
1964; Kennel, Engelmann, 1966] that is based on assump-
tion of weak perturbation of particle dynamics by each
single resonance. This assumption reduces the Vlasov
equation to the Fokker—Plank diffusion equation [Vedenov
et al., 1962; Drummond, Pines, 1962] where the main
characteristics of wave-particle resonant interactions are
diffusion rates. The requirement of a weak perturbation of
particle trajectories for a single resonance is equivalent to
the requirement that such interaction should not last for a
long time, and there are several mechanisms responsible
for particle escape from the resonance.

The original quasi-linear diffusion model assumes the
broad spectrum of waves resonating with charged particles
[Vedenov et al., 1962; Drummond, Pines, 1962], when the
resonance width in velocity space Avg equals to the differ-
ence of resonance vg velocity and wave group velocity

v, = 80)/ Ok (where o and k are wave frequency and wave

number). Thus, change of the resonant particle velocity on

Av, ~ |vR -, | Ak [ k will remove particle from the reso-

nance. As small factor Ak/k is determined by the wave
spectrum width in wavenumber space, Ak. This mechanism
determines the shortness of individual resonance and justi-
fies applicability of the diffusion approximation for model-
ing the dynamics of charged particle ensemble [Karpman,
1974; Le Queau, Roux, 1987; Shapiro, Sagdeev, 1997].
This description works well for low-amplitude whistler-
mode waves resonating with electrons in homogeneous
systems (without spatial gradients of the background plas-
ma and magnetic field), e.g. in the solar wind?

An assumption about background magnetic field ho-
mogeneity, however, does no work for many space plasma
systems. Resonant electron scattering by whistler-mode
waves are often observed in magnetic field traps, regions
with spatially localized minimum of magnetic field magni-
tude, where charged particles can be trapped and bouncing.
Important examples of such traps are radiation belt dipole
field [Lyons, Williams, 1984; Schulz, Lanzerotti, 1974]
and magnetic holes generated by compressional perturba-
tions on the bow shock [Oka et al., 2019]. Bouncing within
magnetic traps, electrons periodically resonate with whis-
tler-mode waves and resonance width for such interactions
is determined by the spatial (field-aligned) gradient of the

resonant velocity Av, ~ |8vR / 6S| / k  [Trakhtengerts,
Rycroft, 2008]. If Avg is finite, the quasi-linear diffusion
model works even for monochromatic waves (Ak — 0)
resonating with electrons in magnetic traps [Albert, 2001;
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Albert, 2010]. Thus, the only condition required for appli-
cation of quasi-linear diffusion mode is the smallest of
wave intensity: the mirror force due to background mag-
netic field gradient should be stronger than the Lorentz
force of wave field [Karpman, 1974].

The small wave intensity approximation, however, is
often violated for whistler-mode waves observed in highly
unstable plasma of shock waves [Zhang et al., 1999; Ar-
temyev et al., 2022] and plasma injections [Zhang et al.,
2018b; Zhang et al., 2019]. Such intense waves may res-
onate with electrons in nonlinear regime, including effects
of phase trapping and phase bunching [Nunn, 1971;
Nunn, 1974; Karpman et al., 1974; Inan et al., 1978].
Although phase bunching is the strongly nonlinear effect
[Albert, 1993; Bortnik et al., 2008], due to smallness of
electron energy and pitch-angle changes in a single reso-
nant phase bunching, it can be incorporated as a drift term
into the Fokker Plank equation [Artemyev et al., 2014;
Allanson et al., 2021; Gan et al., 2020]. Changes of elec-
tron energy and pitch-angle due to the phase trapping are
comparable to the initial energies/pitch-angles [Omura et
al., 2007; Summers, Omura, 2007], and thus this effect
cannot be described by differential operators in the Fok-
ker—Plank equation. Several approaches with different
integral operators describing the phase trapping contribu-
tion to the electron flux dynamics have been proposed
[Omura et al., 2015; Artemyev et al., 2018; Vainchtein et
al., 2018; Hsieh et al., 2020; Allanson et al., 2022], but
evaluation of such operators is computationally expansive
and significantly change the Fokker—Plank equation. Thus,
it’s important and practically useful to propose an approach
for incorporation of nonlinear effects without significant
altering models based on the Fokker—Plank equation.

The principal possibility for such approach has been
proposed in [Solovev, Shkliar, 1986]: the total contribution
of trapping and bunching may compensate each other. This
idea has been reinvestigated in [Mourenas et al., 2018],
where effects of wave modulation were taken into account.
Spacecraft observations [Zhang et al., 2019; Zhang et al.,
2020b; Foster et al., 2021; Oka et al., 2019; Artemyev et
al., 2022] and numerical simulations [Nunn, Omura, 2012;
Katoh, Omura, 2016; Demekhov et al., 2017; Tao et al.,
2020; Zhang et al., 2021] show that intense whistler-mode
waves are mostly propagating in a form of short modulated
wave-packets. Typical wave-packets include only few
wave periods ( Figure 1), that can be an effect of sideband
instability of wave generation [Nunn, 1986] or overlapping
of several waves with close wave frequencies [Zhang et al.,
2020b; Nunn et al., 2021]. Such modulation reduces the
efficiency of phase trapping [Tao et al., 2012; Tao et al.,
2013], and make a net effect of electron resonant interac-
tions with waves more diffusive [Zhang et al., 2020a; Al-
lanson et al., 2020; Allanson et al., 2021; Gan et al., 2020;
An et al., 2022]. Thus, derivation of diffusion rates is the
main question for theoretical description of such regime of
wave-particle interaction.

In this work, we propose an approach for evaluation of
diffusion rates including nonlinear effects for intense, but
strongly modulated waves. Firstly, we derive basic model
equations for the relativistic electron in the background
magnetic field including equations of motion. Secondly,
we introduce wave modulations that can fit the experi-
mental data (see Figure 1). Thirdly, we compare the results

of computations for the constant amplitude case and for the
modulated one to evaluate the reduction of nonlinear ef-
fects by modulations.

BASIC CONCEPT AND MAIN EQUATIONS

To propose the approach for evaluation of such diffu-
sion rate, let us illustrate the wave modulation effect on
nonlinear wave-particle interactions. We consider electron
bouncing in a magnetic trap modelled by curvature free
dipole field [Bell, 1984] and their resonant interaction with
monochromatic intense whistler-mode wave. Using the
wave model from [Vainchtein et al., 2018], we evaluate a
set of test particle trajectories resonating once with whis-
tler-mode waves. We start with the Hamiltonian of a rela-
tivistic electron (rest mass is m, and charge is —e) bouncing
in the magnetic trap and interacting with a field-aligned
whistler-mode wave:

2
e
H:\/(p——A) cm'ct,
c

where p is a canonical momentum and A is a vector
potential. Potential A can be derived from the equation
B=rotA. Magnetic field induction B consists of two
separate terms: B=B,+B,, where B, is the background
magnetic field of Earth and B,, corresponds to the in-
duction of the wave. Strong background magnetic field
B, makes the coordinate space highly anisotropic. That
suggests that the particle will mainly propagate along

the magnetic vector Bo. Thus, relations 6. >0 ,0,

hold. We define By as a magnetic field of a dipole and
can write down A as

B, B, .
A=| -—=cos¢, xB, ——=sin¢, 0
k k

where k is the wave number and ¢ is the wave phase.
Using this equation for the potential, the Hamiltonian
can be written as

H=mc x

p ) p ) Q B (o B
A+ — | +| — | +———cos¢) + — - ———sin ¢
mc mc ke B“ c ke B“

where Q.. =eBy/(m,..) is the cyclotron frequency of elec-
tron. The wavenumber can be determined by the cold
plasma approximation: kc/Qp.=(Qc./ o—1)", where

Q= / 41tnee2 /'m_ is the plasma frequency of electrons.

To separate the perturbed and unperturbed parts, it is
convenient to introduce another pair of canonical variables

(v, I) where Ix = (2n)" Cj) dx p, is the adiabatic invariant
of the system

c [21Q, .
x=— = siny,
Q. m.c
2IXQCC
px=mc - cosy.
mc

Substituting these equations into the Hamiltonian,
gives
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Figure 1. Examples of typical wave-packets of whistler-mode waves captured by THEMIS spacecraft [Angelopoulos, 2008]
in Earth bow shock (a), foreshock transient (b), outer radiation belt (c), plasma injection region (d). These events are picked up

from statistics published in [Artemyev et al., 2022; Shi et al., 2020; Zhang et al., 2018b, a]
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Figure 2. Set of trajectories for low amplitude wave with diffusive scattering (a), coherent high-amplitude wave with trap-
ping and bunching (b), modulated high-amplitude wave with diffusive-like scattering (c¢). System parameters are: electron energy
E;=100 keV, equatorial pitch-angle ay,=40°, number of particles N=100, wave amplitude B,=5 pT (a), B,=500 pT (b, c)

PHASE MODULATION sented on Figure 3 suggest that wave modulations effec-
tively reduce the impact of the nonlinear interaction:
there is no trapped particles with energy deviations
comparable to the initial energy and phase bunching is
now greatly balanced by enhanced trapped population.
But for the higher wave amplitudes the diffusion pro-
cess does not obey the quasi-linear theory (Dgp~€’) as
its power asymptote goes lower than the theoretical pre-
diction: Dgg~¢g? 0<g<2.

The Hamiltonian derived in the previous section ful-
ly determines the evolution of the system parameters. In
a general case, By, is a function of ¢. Such modulation of
the wave amplitude strongly affects the dynamics of the
system as it suppresses the effects of nonlinear interac-
tions. Figure 2 shows the simulation results for various
sets of parameters: wave amplitudes and B, (¢). The
modulations force particles to escape from the trapping,
and thus make wave-particle resonant interactions more
diffusive.

We define the diffusion coefficient D, = <(AE )2>

CONCLUSIONS

To conclude, the resonant electron interaction with
highly intense whistler-mode waves cannot be described
as a function of the wave intensity and compare the re- by the quasi-linear theory considering the effect of non-
sults to the quasi-linear theory. Numerical results pre-  linear interactions, but the wave intensity modulations
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Figure 3. The probability density as a function of the wave amplitude coefficient € and particle’s energy deviation AE. The
top row corresponds to the system with a constant amplitude and the bottom one — to a modulated intensity. Three sets of initial
conditions were taken: Ey=100 keV, 0q=40° (a, d); E,=100 keV, 0y=60° (b, e); E,=300 keV, 0y=60° (c, f)

resolves this issue: the modulation of wave amplitude
suppresses the trapping process and reduces the net ef-
fect of phase bunching. However, the diffusion coeffi-
cient Dgy derived for such intense modulated waves has
a different scaling with the wave amplitude in compari-
son with one predicted by the quasi-linear theory:
Dip~¢?, 0<g<2. The factor g can be determined from
the Hamiltonian equations that were derived in this

paper.
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