Вычисление частоты молний по статистическим характеристикам атмосферной конвекции

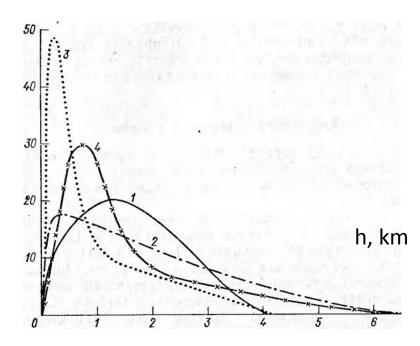
А.Н. Плосков, А.В. Елисеев, А.В. Чернокульский, И.И. Мохов

МЕЖДУНАРОДНАЯ БАЙКАЛЬСКАЯ МОЛОДЕЖНАЯ НАУЧНАЯ ШКОЛА ПО ФУНДАМЕНТАЛЬНОЙ ФИЗИКЕ 2019

Схема Прайса – Ринда

$$f = C h^{\alpha}$$

f -частота молний (ЧМ) на единицу площади h — высота верхней границы конвективных облаков Показатель степени α и коэффициент C различны для облаков континентального и морского происхождения (α = 4.9 и α = 1.7 соответственно)


Проблемы параметризации молниевой активности в КМПС

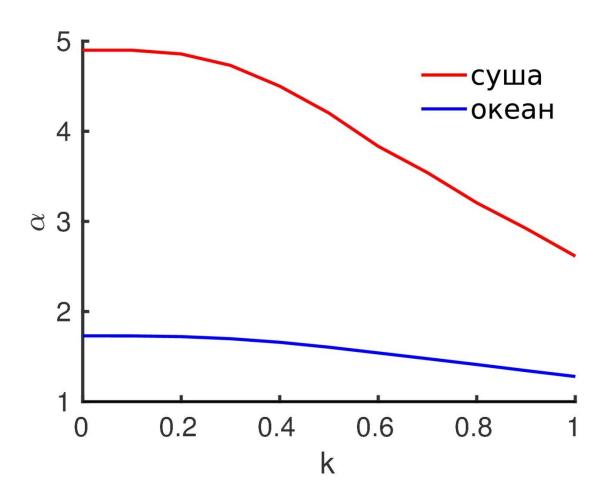
- Шаг по времени в КМПС 10⁵-10⁶ с
- Шаг вычислительной сетки ~10⁸ м
- Характерное время жизни конвективных облачных систем 10³-10⁴ с
- Характерный пространственный масштаб ~10⁴ м

Вывод: невозможно разрешить явно отдельные конвективные облака или даже отдельные системы таких облаков, необходим переход к статистическим ансамблям таких систем.

Модификация схемы

- 1. h \sim гамма-распределение с параметром формы a > 1 и параметром масштаба b
- средняя высота облаков
 H = a b
- стандартное отклонение высоты облаков $\sigma = a^{\frac{1}{2}}b$
- коэффициент вариации $k = \sigma / H = a^{-\frac{1}{2}} (k < 1)$

Гистограмма распределения верхних границ облаков [Мазин, Хргиан, 1989]


Модификация схемы

2. При построении статистической выборки для различных $1 \text{ км} \le H \le 20 \text{ км}$ и $0 \le k \le 1$ дополнительно предполагалось, что $h \le h_{max} = 20 \text{ км}$

3.
$$< f > = C < h^{\alpha} >$$

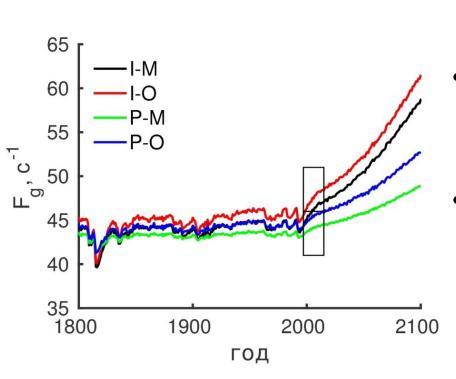
4. При каждом значении k показатель степени α определялся с использованием линейной регрессии $\ln <f>$ на $\ln H$.

Полученная зависимость показателя степени α от коэффициента вариации k для функции распределения вероятности высоты конвективных облаков.

Схема используемая в КМ ИФА РАН

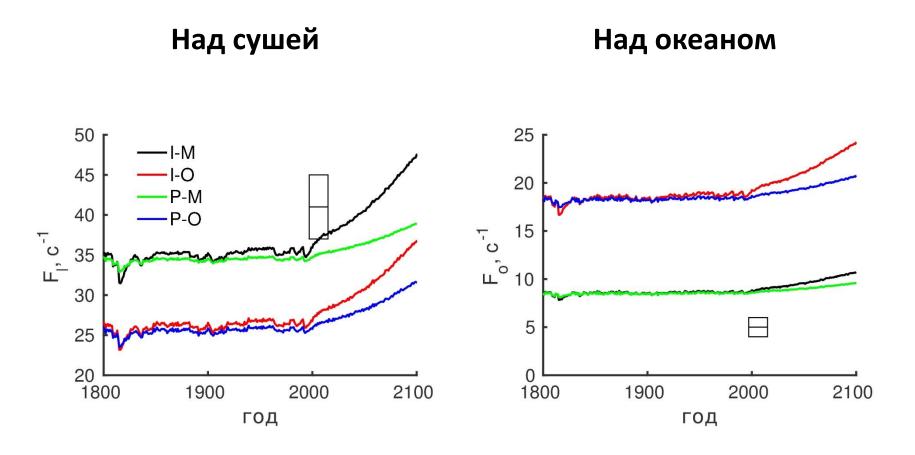
$$f = C h^{\alpha} n_{co}$$

 n_{co} - количество конвективных облаков в вычислительной ячейке

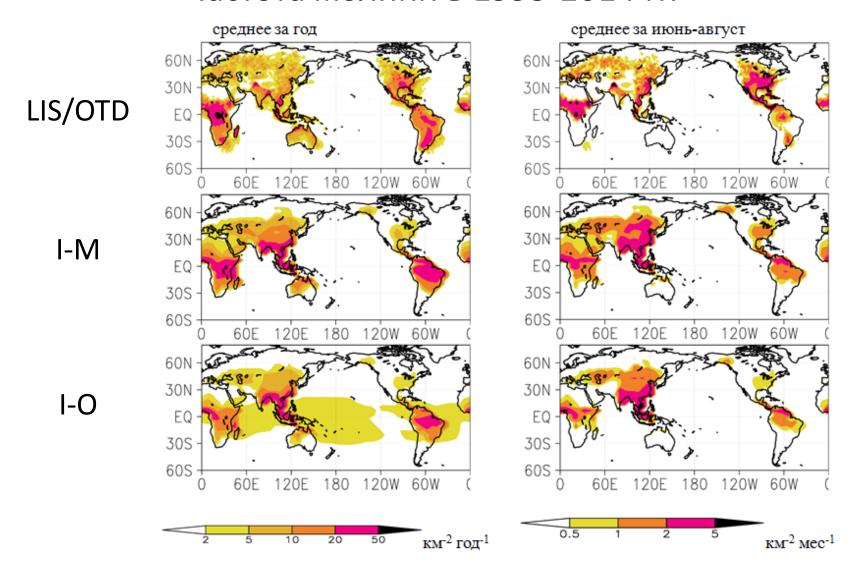

α=2.6 над сушей

α=1.3 над океаном

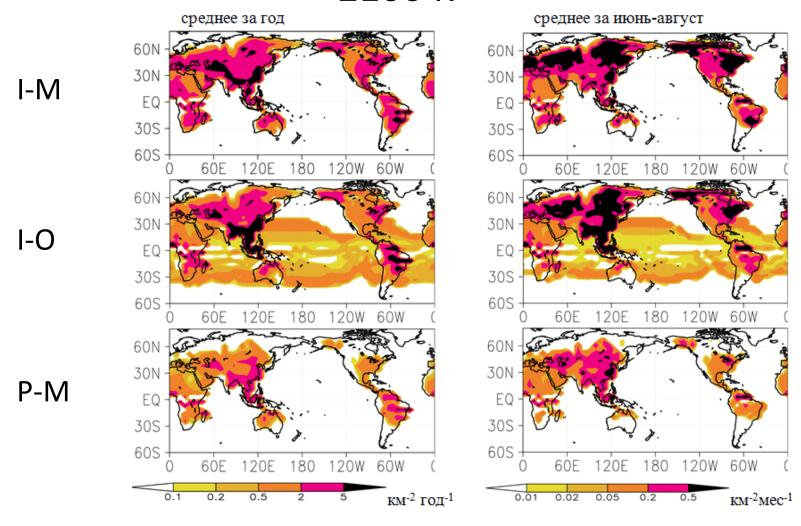
случай k=1


Константа *С* подбирается для глобальной корректной частоты молний

Среднегодовая частота молний в численных экспериментах с КМ ИФА РАН.



- Версия I-М: полная модель
- Версия I-O: полая модель с показателями степени из [Price,Rind;1992]
 - Версии P-M и P-O расчеты с многолетним средним n_{co} для доиндустриального периода


Среднегодовая частота молниевых вспышек в численных экспериментах с КМ ИФА РАН.

Частота молний в 1995-2014 гг.

Изменение частоты молний от 2014 г. до 2100 г.

Выводы

- Разработана модификация распространённой схемы [Price,Rind;1992]
 для вычисления частоты молний.
- Пространственно-временное осреднение приводит к понижению показателя степени в зависимости частоты молний от высоты верхней границы грозовых облаков.
- Модифицированная версия схемы внедрена в КМ ИФА РАН, с которой проведены численные эксперименты в соответствии с СМІР5 и RCP8.5.
- Результаты расчётов характеристик молниевой активности с модифицированной схемой лучше согласуются со спутниковыми данными для ЧМ, чем с исходной версией.
- Чувствительность частоты молний к изменению приповерхностной температуры атмосферы на глобальном уровне получена равной 10%/К.