СРАВНЕНИЕ СЕЗОННЫХ ИЗМЕНЕНИЙ МАГНИТНОГО МОМЕНТА ЗЕМЛИ ПО ОБСЕРВАТОРСКИМ ДАННЫМ

А.А. Ковалев, Н.Н. Семаков

Институт нефтегазовой геологии и геофизики им. А.А. Трофимука СО РАН, Новосибирск, Россия kovalevaa@ipgg.sbras.ru

COMPARISON BETWEEN SEASONAL CHANGES IN THE EARTH'S MAGNETIC MOMENT MADE WITH MAGNETIC OBSERVATIONS

A.A. Kovalev, N.N. Semakov

Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, Novosibirsk, Russia kovalevaa@ipgg.sbras.ru

Аннотация. По результатам геомагнитных наблюдений в различных регионах земного шара проведено сопоставление изменений магнитного момента. Выявлены изменения различного знака (увеличение или уменьшение) на многолетних интервалах. Масштабы сезонных изменений величины магнитного момента невелики.

Ключевые слова: магнитный момент, локальная магнитная постоянная, вековая вариация магнитного поля.

Abstract. The comparison of changes in the magnetic moment was calculated based on the results of geomagnetic observations in various regions of the globe. Significant changes of the different sign (increase or decrease) on long-term intervals was revealed. The magnitude of the seasonal variations in the magnitude of the magnetic moment are insignificant.

Keywords: magnetic moment, local magnetic constant, secular variation of the magnetic field.

Изучение пространственно-временных особенностей магнитного момента Земли по наблюдениям в различных точках земного шара было начато Л. Бауэром [Ваиег, 1914]. Им было обнаружено значительное различие в величине и в характере изменения магнитного момента по наблюдениям в Европе и в южной части Азии. К сожалению, в последующие годы появлялось всего несколько работ в исследовании современного геомагнитного поля, посвященных этой теме [Аѕ, 1967; Bronstein, 1937].

По значениям измеренных в этих районах элементов земного магнетизма Бауэром вычислялась «локальная магнитная постоянная» (G). Эта величина связана с магнитным моментом диполя (M) и расстоянием до него простым соотношением:

$$M = G \times R^3. \tag{1}$$

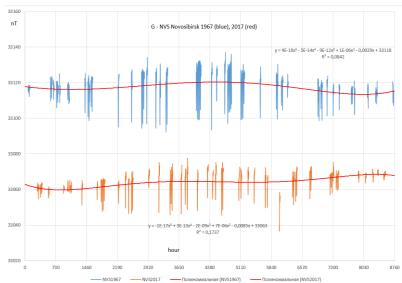
«Постоянство» величины G заключается в том, что, в отличие от всех других характеристик магнитного поля (элементов земного магнетизма), она сохраняет свое значение при повороте оси диполя относительно точки наблюдения и неизменности величины R. То есть в любой точке сферы, в центре которой расположен диполь, значение величины G будет одинаковым и изменится только при изменении величины магнитного момента диполя. В различных точках земной поверхности нами было выбрано 10 магнитных обсерваторий с достаточно длинными рядами наблюдений. В каждой из обсерваторий для двух удаленных эпох (к примеру, 1958 и 2017 гг.) использовались среднечасовые значения элементов земного магнетизма в 5 спокойных в магнитном отношении дней. По этим значениям вычислялась величина G в соответствии с формулой (2):

$$G = T(1 - 0.75\sin^2(I))^{0.5}. (2)$$

В таблице показаны среднегодовые значения модуля вектора магнитной индукции (T), магнитного наклонения (I), величины G, M, а также величин изменения

магнитного момента в процентах за год (ΔM (%/yr)) и за столетие (ΔM (%/cent.)). При расчете величины M в формуле (1) использовался средний радиус Земли, равный 6371 км.

В нижней части таблице показаны средние значения указанных выше характеристик. Следует отметить, что при средней величине магнитного момента 8.435E+25 его максимальное значения в обсерватории Алибаг в 1958 г. (1.026E+26) в 1.35 раза превышает минимальное значение, полученное в 1958 г. в обсерватории Хартленд (7.406E+25).


Для большинства обсерваторий за прошедшие десятилетия наблюдалось уменьшение магнитного момента, но в отдельных регионах (Африка, Европа и Дальний Восток) наблюдалось его увеличение. В среднем эта характеристика для данной выборки обсерваторий показала уменьшение магнитного момента со скоростью около 1.5 % за столетие. Это сопоставимо, хотя и несколько отличается от известной оценки уменьшения магнитного момента за последние 400 лет со скоростью около 5 % за столетие.

Для каждой из указанных в таблице обсерватории были построены графики, показывающие изменение величины G в течение года, отражающие характер изменения магнитного момента в разных регионах. На рис. 1 приведены разбросы среднечасовых значений G в каждый из 5 спокойных дней каждого месяца 1967 и 2017 г. Красной линией показан тренд (полином 5 степени и достоверность аппроксимации рядом с графиком). Уменьшение величины G за эти годы составило около 50 нТл. Сезонные изменения составили не более 10 нТл, но характер этих изменений в разные годы не совпадает. При этом можно отметить существенное увеличение амплитуды суточного разброса в летние периоды по сравнению с зимними.

В обсерватории Паратунка наблюдается противоположный характер в изменении магнитного момента (рис. 2). Увеличение величины G с 1967 по 2017 г.

Параметры и величины изменений магнитного момента в обсерваториях

-									2 2		
Станция	Год	90–φ	φ	λ	<i>D</i> (град)	<i>I</i> (град)	T (н T л)	G (н T л)	М Гс·см ³	$\Delta M (\%/\text{yr})$	ΔM (%/cent.)
AAE 1959	1959	80.965	9.035	38.77	-0.4470	-0.9883	36108.76	36104.7	9.337E+25	0.00996	0.99617
AAE 2013	2013	80.965	9.035	38.77	1.8719	2.9487	36335	36298.92	9.387E+25		
ABG 1958	1958	71.362	18.638	72.872	-0.8037	24.6455	42537.7	39666.97	1.026E+26	-0.00827	-0.82745
ABG 2017	2017	71.362	18.638	72.872	0.3396	27.7377	43132.27	39473.32	1.021E+26		
CNB 1981	1981	125.315	-35.32	149.363	12.1893	-66.1376	58793.45	35894.88	9.282E+25	-0.02663	-2.66328
CNB 2017	2017	125.315	-35.32	149.363	12.5729	-65.8615	58021.09	35550.72	9.193E+25		
HAD 1958	1958	39.005	50.995	355.516	-10.1842	66.7762	47298.65	28638.87	7.406E+25	0.06417	6.41711
HAD 2017	2017	39.005	50.995	355.516	-1.9331	65.9828	48586.76	29723.17	7.686E+25		
HON 1958	1958	68.68	21.32	202	11.6239	38.9796	36521.84	30626.74	7.92E+25	-0.07247	-7.24748
HON 2017	2017	68.68	21.32	202	9.7480	37.7869	34588.43	29317.13	7.581E+25		
MAW1964	1964	157.604	-67.6	62.879	-61.0358	-69.2645	51822.99	30395.68	7.86E+25	-0.06257	-6.25748
MAW2017	2017	157.604	-67.6	62.879	-68.5514	-67.8542	49213.9	29387.62	7.6E+25		
MEA1958	1958	35.384	54.616	246.653	24.2465	77.5920	60226.5	32131.22	8.309E+25	-0.05569	-5.56926
MEA 2017	2017	35.384	54.616	246.653	14.6360	75.7838	57191.96	31075.43	8.036E+25		
NVS 1967	1967	35.15	54.85	83.23	9.0245	73.1404	59186.85	33117.51	8.564E+25	-0.00323	-0.32272
NVS 2017	2017	35.15	54.85	83.23	8.2400	74.2333	59832.94	33064.07	8.55E+25		
PET 1969	1969	37.029	52.971	158.248	-5.2681	64.3096	51005.01	31891.28	8.247E+25	0.01059	1.05857
PET 2017	2017	37.029	52.971	158.248	-6.2657	65.4238	52015.76	32053.32	8.289E+25		
RES 1960	1960	15.31	74.69	265.105	1.1145	89.1556	58048.24	29033.61	7.508E+25	-0.00877	-0.87729
RES 2017	2017	15.31	74.69	265.105	-21.5509	87.2022	57571.45	28888.43	7.47E+25		
						Среднее	49902.21	32617.09	8.435E+25	-0.01529	-1.52931

 $Puc.\ 1.$ Локальная магнитная постоянная (G) обсерватории Новосибирск в 1967 и 2017 г. по спокойным дням

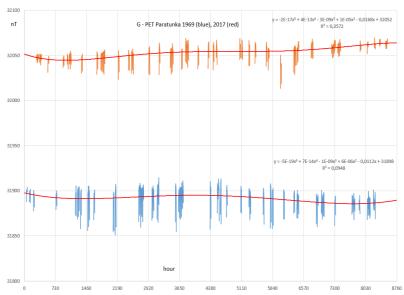


Рис. 2. Локальная магнитная постоянная (G) обсерватории Паратунка в 1969 и 2017 г. по спокойным дням

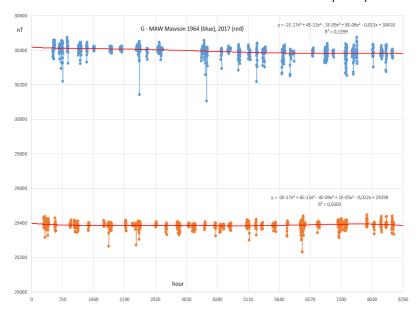


Рис. 4. Локальная магнитная постоянная (G) обсерватории Моусон в 1964 и 2017 г. по спокойным дням

2017 г. составило 150 нТл. Сезонные изменения составили не более 20 нТл, и характер этих изменений в разные годы тоже не совпадает. Увеличение амплитуды суточного разброса в летние периоды по сравнению с зимними заметны, но не существенны.

В обсерватории Моусон (рис. 4) уменьшение величины *G* с 1964 по 2017 г. составило 1000 нТл. Сезонные изменения составили не более 20 нТл, характер этих изменений в разные годы не совпадает. Изменение амплитуды суточного разброса в летние периоды по сравнению с зимними не заметны, хотя предполагалось выявить уменьшение амплитуды в мае—сентябре для этой обсерватории, находящейся в южном полушарии.

ЗАКЛЮЧЕНИЕ

Сезонный тренд в изменении магнитного момента для обсерваторий, расположенных в тропических широтах, не наблюдается. В средних и высоких широтах наблюдается слабые отклонения средних значений величины локальной магнитной постоянной, величина которых, как правило, меньше суточного разброса значения G.

Работа выполнена при поддержке проекта ФНИ № 0331-2019-0013 «Проявление процессов глубинной геодинамики в геосферах Земли по результатам мониторинга геомагнитного поля, ионосферы и космических лучей».

СПИСОК ЛИТЕРАТУРЫ

Bauer L.A. The local magnetic constant and its variations // Terr. Mag. sept.1914. V. 19. P. 113–125.

Ispir Y., Isikara A.M., Ozden H. Variation in the local magnetic constant and conductivity of Turkey // J. Geomag. Res. 1976. V. 103. P. 17489–17504.

Bronstein K.G. Application of a local magnetic constant for geological interpretation of magnetic anomalies // Information book on terrestrial magnetism and electricity. 1937. V. 3. P. 16–17.

Семаков Н.Н. Глобальные закономерности изменения магнитного момента Земли по данным магнитных обсерваторий // Геология и геофизика. 1996. Т. 37, № 11. С. 83–87.

As J.A. Past, present and future changes in the earth's magnetic field. In Magnetism and the Cosmos / edited by W.R. Hindmarsh, F.J. Lowes, P.H. Roberts, S.K. Runcorn, Oliver and Boyd Ltd. 1967. P. 29–44.