Федеральное государственное бюджетное учреждение науки Институт проблем химико-энергетических технологий Сибирского отделения Российской академии наук

XV Конференция молодых ученых "Взаимодействие полей и излучения с веществом"

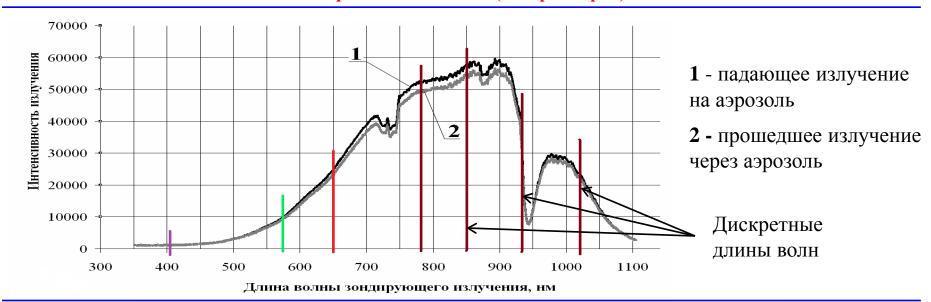
10 – 16 сентября

Тема: «РАЗРАБОТКА МЕТОДИКИ ОПРЕДЕЛЕНИЯ ДИСПЕРСНЫХ ПАРАМЕТРОВ АЭРОЗОЛЬНЫХ СРЕД С ИСПОЛЬЗОВАНИЕМ ТУРБИДИМЕТРИЧЕСКОГО МЕТОДА»

Мецлер Э.А., Павленко А.А., Титов С.С.

Иркутск, 2017

Актуальность работы



МСП и модификация МСП

Особенность модификации: переход от сплошного спектра источника излучения к набору дискретных длин волн (набор лазеров)

Особенности связанные с реализацией МСП:

- диапазон размеров частиц от 0,02 до 6 мкм;
- возможность работы в условиях фонового излучения;
- значение оптической толщины до 3;
- временное разрешение до 80 Гц (особенность приемника).

Приемник оптического излучения: **спектрометр**

Особенности связанные с реализацией модификации МСП:

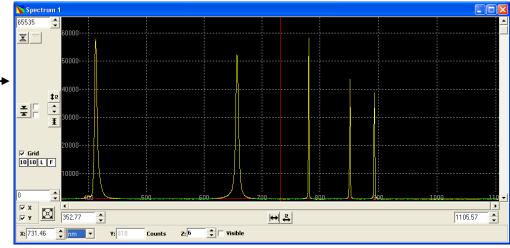
- высокое временное разрешение (до 10 кГц);
- возможность работы в условиях фонового излучения;
- значение оптической толщины до 9;
- длина оптического пути до 3 метров;
- расширение диапазона размеров частиц 0,02 до 10 мкм.

Приемник оптического излучения: набор фотодиодов

Подход к решению обратной задачи оптики аэрозолей

Уравнение Фредгольма первого рода:

Разработана методика


определения D32

f(D) - искомая функция распределения частиц по размерам

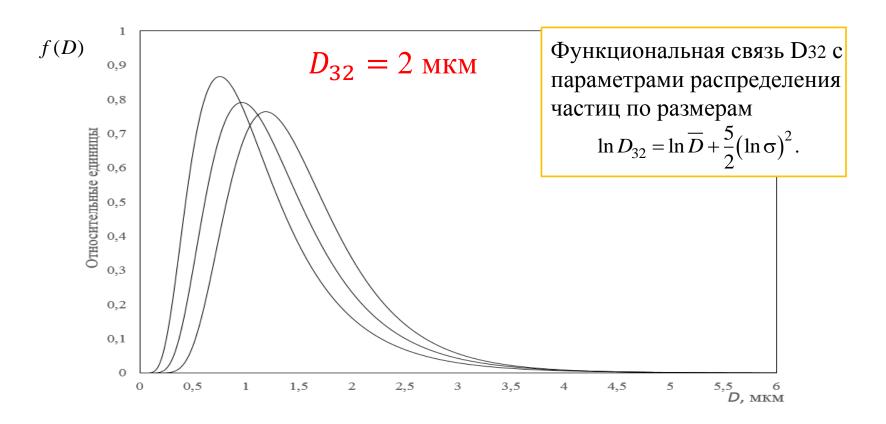
 $\tau(\lambda)$ - экспериментальные данные об ослаблении оптического излучения

 $D_{32}\,$ - средний объемно-поверхностный диаметр частиц

Спектр источника излучения

Погрешность измерения интенсивности излучения

Применимость закона Бугера-Ламберта-Бера


Логарифмически нормальное распределение

$$f(D) = \frac{1}{D\sqrt{2\pi}\ln\sigma} \exp\left[-\frac{\left(\ln D - \ln \bar{D}\right)^2}{2\left(\ln\sigma\right)^2}\right]$$

D - диаметр частиц;

In σ - логарифм среднеквадратического отклонение диаметров;

 $\ln \bar{D}$ - логарифм математического ожидания диаметров частиц.

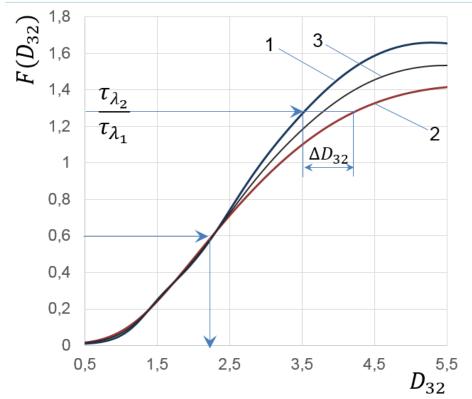
Регуляризация Тихонова

Выбор параметра регуляризации осуществляется по «обобщенной невязке» методом L-кривой

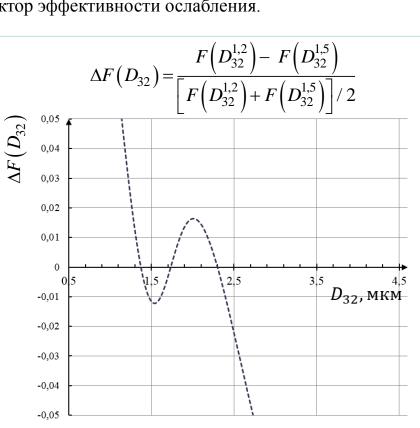
$$\xi_k = \xi_0 q^k, \quad q > 0 \quad k \in [0..K]$$

Условия корректно поставленной задачи по Адамару:

- 1) Решение существует
- 2) Решение единственно
- 3) Малое изменение $\tau^{\delta}(\lambda)$ соответствует малому изменению f(D)


Методика определения D32

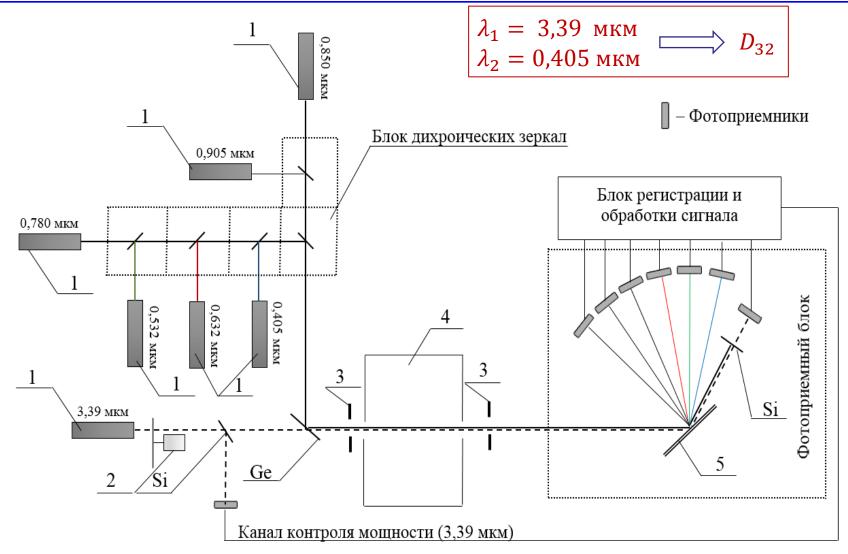
Спектральная оптическая плотность слоя равномерно распределенных полидисперсных частиц


$$au_{\lambda} = \frac{3C_{m}l\,\overline{Q}(\lambda,D_{32})}{2\,\rho_{p}\,D_{32}}$$
 C_{m} - массовая концентрация;

$$\overline{Q}(\lambda, D_{32}) = \frac{\int_0^\infty Q\left(\pi D/\lambda, m(\lambda)\right) f(D) D^2 dD}{\int_0^\infty f(D) D^2 dD} - \text{усредненный фактор эффективности ослабления.}$$

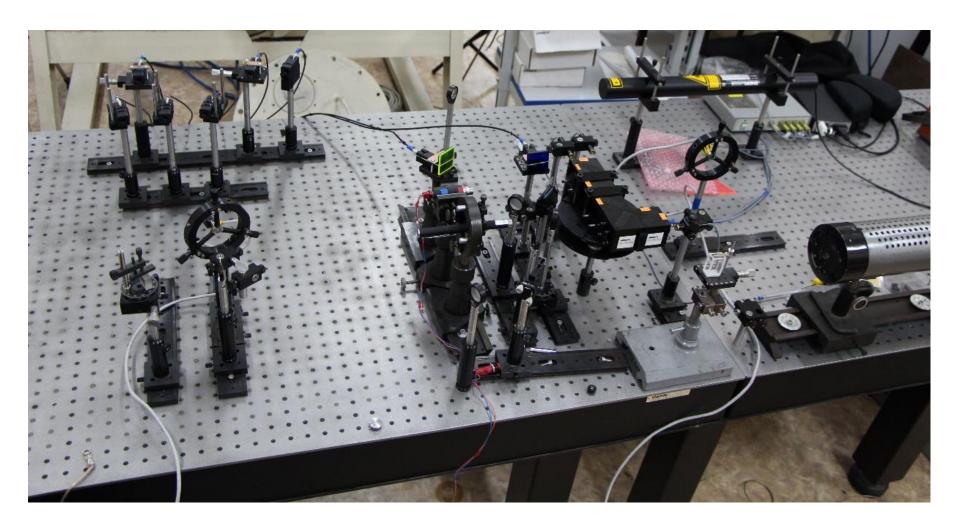
 $\frac{\tau_{\lambda_2}}{\tau_{\lambda_1}} = \frac{\overline{Q}(\lambda_2, D_{32})}{\overline{Q}(\lambda_1, D_{32})} = F(D_{32}).$

1 - ЛНР для $\sigma = 1,2; 2 - ЛНР$ для $\sigma = 1,6; 3 - среднее$ Зависимости для ЛНР с различной шириной распределения

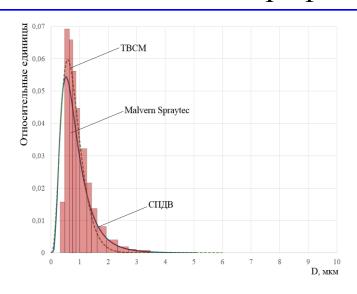


теоретический расчет

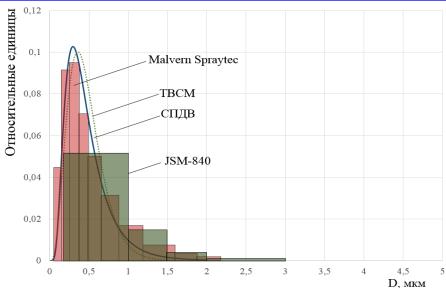
- экспериментальные данные


Зависимости относительного отклонения $\Delta F(D_{32})$ для длин волн 3,39 мкм и 0,405 мкм

Структурная схема экспериментальной установки


- 1 источники лазерного излучения; 2 механический модулятор;
- 3 диафрагмы; 4 измерительный объем; 5 дифракционная решетка;

Внешний вид экспериментальной установки



Внешний вид разработанной экспериментальной установки определения дисперсных характеристик

Верификация разработанного метода

Функции распределения частиц по размерам водных суспензии из частиц оксида титана

Функции распределения частиц по размерам водных суспензии из частиц оксида алюминия

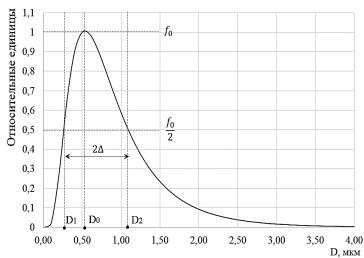
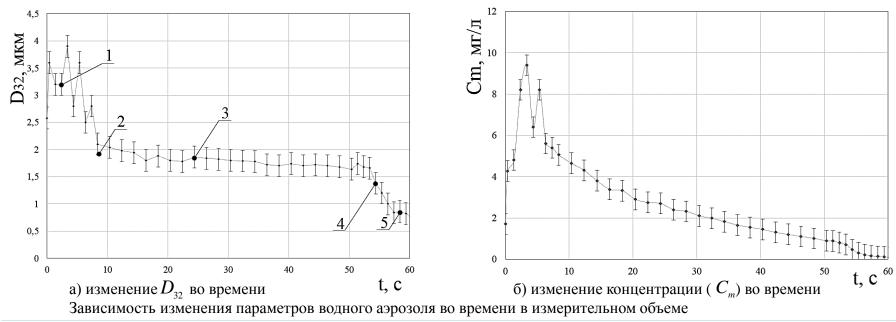
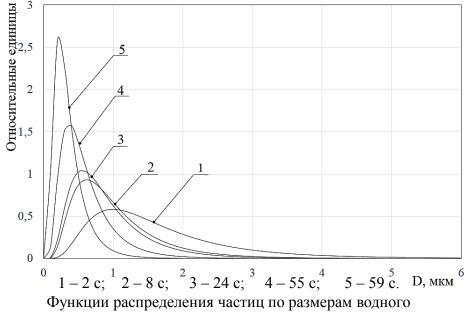


Рисунок 7 – Геометрические характеристики функции распределения частиц по размерам

Геометрические характеристики унимодального распределения частиц по размерам:


- модальный диаметр D_0 ;
- полуширина распределения Δ ;


- асимметрия
$$\varepsilon = \frac{D_{\scriptscriptstyle 0} - D_{\scriptscriptstyle 1}}{2\Delta}$$
 .

TiO ₂	D_0	Δ	ε
Spraytec	0,640	0,350	0,286
СПДВ	0,505	0,420	0,292
Относительная	0,21	0,20	0,02
погрешность			

Al_2O_3	D_0	Δ	ε
Spraytec	0,281	0,205	0,353
СПДВ	0,302	0,215	0,295
Относительная	0,075	0,05	0,20
погрешность			

Исследование динамики двухфазных сред

аэрозоля

Массовая концентрация частиц:

$$C_{m}(t) = \frac{1}{5} \sum_{i=1}^{5} \frac{\tau_{\lambda}^{3\kappa cn} \rho_{p} D_{32}(t)}{1,5l\bar{Q}(\lambda, D_{32})}$$

 ρ_p - плотность материала частиц.