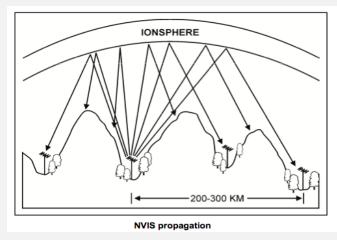
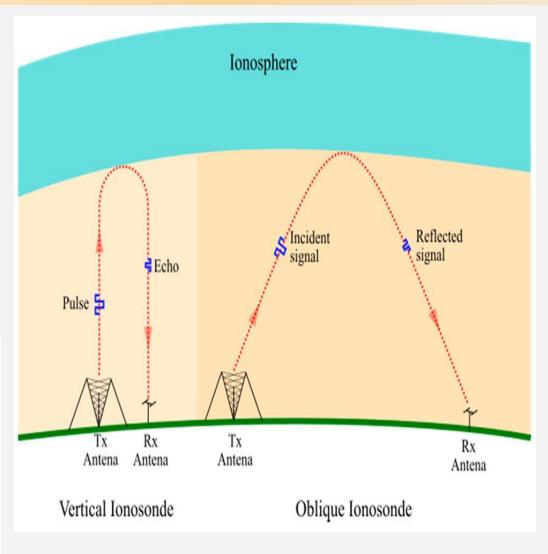



# Поволжский государственный технологический университет


УНИВЕРСАЛЬНЫЙ ИОНОЗОНД НА ОСНОВЕ SDR TEXHОЛОГИИ ДЛЯ НАКЛОННОГО И ВЕРТИКАЛЬНОГО ОДНОПОЗИЦИОННОГО ЗОНДИРОВАНИЯ ИОНОСФЕРЫ DSSS, FMCW И FMICW СИГНАЛАМИ

Д.В. Иванов, В.А. Иванов, А.А. Елсуков, В.В. Овчинников


#### Способы зондирования ионосферы и классификация ионозондов



#### Структура ионосферы



Зондирование в режиме в NVIS и его применение для ближней КВ связи



#### По методу зондирования:

- вертикальные
- наклонные
- возвратно-наклонные

## По определяемым характеристикам:

- дистанционно-частотные
- высотно-частотные
- канальные

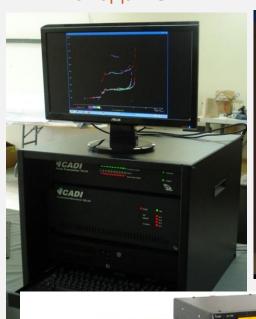
### По форме сигнала с расширенным спектром:

- с фазо-кодоманипулированным сигналом (DSSS)
- с линейно-частотномодулированным сигналом (FMCW, FMICW)

#### Цель и задачи исследования

**Цель работы:** создание универсального по методу зондирования и по форме сигнала ионозонда, работающего маломощными сигналами с расширенным спектром.

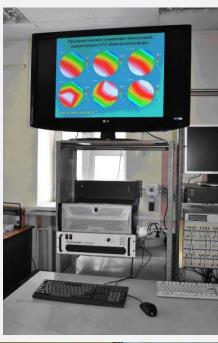
#### Задачи:


- 1. Анализ существующих ионозондов и их технических характеристик.
- 2. Разработка методик и алгоритмов синтеза и обработки зондирующих сигналов с расширенным спектром в комплексной области с возможностью реализации на универсальной аппаратной платформе по технологии программно-определяемого радио (SDR).
- 3. Создание программного обеспечения для реализации разработанных алгоритмов с использованием новых возможностей предоставляемых SDR технологией.
- 4. Экспериментальная верификация разработки при использовании режимов НЗ, одноантенного ВЗ и сигналов FMCW, FMICW и DSSS.

#### Анализ существующих ионозондов и их технических характеристик

CШA DPS - 4




Канада - CADI



Англия - DAMSON



РФ - Томион



РФ - Многофункциональный ЛЧМ ионозонд ИСЗФ СО РАН



РФ - Мобильный ионозонд ПГТУ

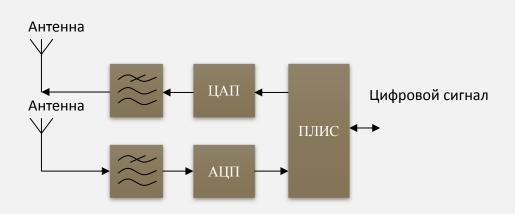


США - chirp sounder



РФ - Парус-А

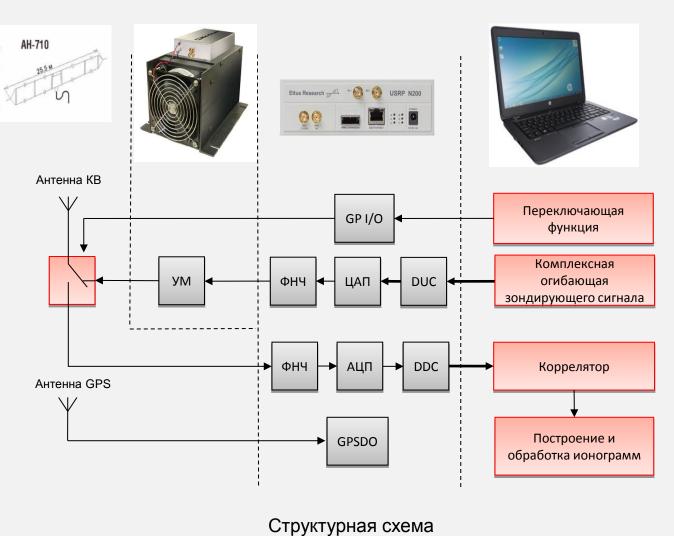
#### Анализ существующих ионозондов и их технических характеристик

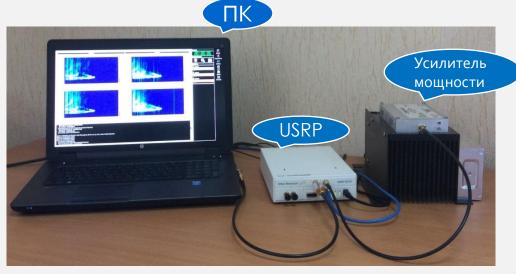

| Название                | Страна    | Рабочие частоты,<br>МГц | Излучаемая<br>мощность, кВт | Вид сигнала             | Вид<br>зондирования              |
|-------------------------|-----------|-------------------------|-----------------------------|-------------------------|----------------------------------|
| RCS-2<br>RCS-7          | США       | 2-30                    | 0,01-0,1                    | ЛЧМ                     | панорамный                       |
| DPS-4                   |           | 1-30                    | 0,3 2                       | ФКМ                     | панорамный                       |
| Dynasonde-21            |           | 0,1-30                  | 4                           | Импульсный<br>(простой) | панорамный                       |
| IPS-71                  | Австралия | 2-20<br>2-62            | 0,05                        | ЛЧМ                     | панорамный                       |
| CADI                    | Канада    | 2-16                    | 0,6                         | ФКМ                     | панорамный                       |
| Парус-А                 | Россия    | 1-20                    | 12                          | Импульсный<br>(простой) | панорамный                       |
| Авгур-К                 |           | 1-20                    | 15                          | Импульсный<br>(простой) | панорамный                       |
| Ионозонд<br>ПГТУ        |           | 2-20<br>2-30            | 0,03-0,1                    | лчм, фкм                | панорамный,<br>канальный         |
| Ионозонд ИСЗФ<br>СО РАН |           | 2-30                    | 0,03                        | ЛЧМ                     | панорамный                       |
| Ионозонд Томион         |           | 0,5-30                  | 0,1-4                       | Импульсный<br>(простой) | панорамный                       |
| DAMSON                  | Англия    | 2-21                    | 0,01-0,1                    | ФКМ                     | канальный                        |
| SCIPION                 | Франция   | 1-30                    | 0,25                        | ФКМ                     | панорамный <b>,</b><br>канальный |

#### Возможности универсальной аппаратной платформы созданной по SDR технологии

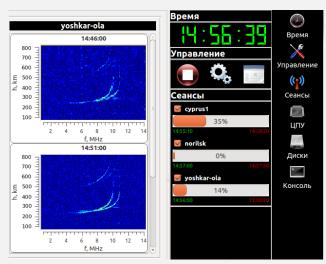
SDR - технология программно-конфигурируемых (определяемых) радиосистем

USRP - универсальная аппаратная платформа, позволяющая реализовать SDR технологию для различных устройств, работающих в диапазоне до 6 ГГц


- обеспечивает существенно более высокую точность математических операций при синтезе и обработке сигнала,
- обеспечивает возможность создания на одной аппаратной платформе различных (новых) устройств путем перепрограммирования,
- обеспечивает возможность применения более сложных алгоритмов обеспечивающих лучшие результаты выделения сигнала на фоне шумов.







Полностью цифровые синтез и обработка сигналов благодаря применению принципа АЦП к антенне

#### Блок схема и внешний вид созданного универсального ионозонда



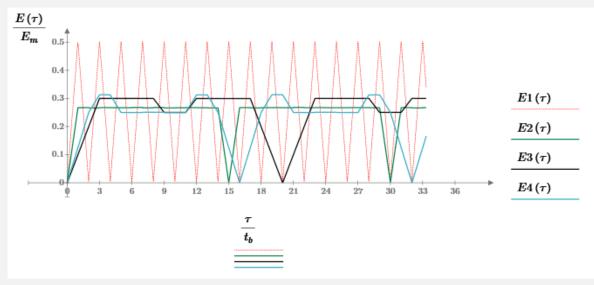


#### Внешний вид

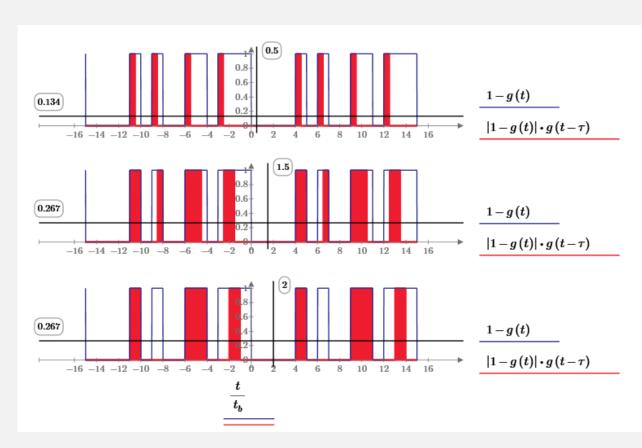


Интерфейс программы

#### Методика применения FMICW сигнала в задаче одноантенного ВЗИ


Средняя амплитуда сжатого принимаемого сигнала на периоде анализа

$$MRS = E(\tau) = \frac{1}{T_a} \int_{0}^{T_a} g(t - \tau) \cdot [1 - g(t)] dt$$


где

g(t) -переключающая функция передачи

[1-g(t)] -переключающая функция приёма



Функция MRS при использовании в качестве переключающей функции: прямоугольных импульсов (Е1 - красный) равной длительности; периодической М-последовательности длинной 15 бит (Е2 - зеленый) и периодических последовательностей Salous длинной 20 бит (Е3 - черный) и Barry (Е4 - голубой) длинной 16 бит



Функция приёма (синий), принятый сигнал (красный) и его средний уровень для задержек отнесённых к времени бита для М-последовательности

#### Алгоритм формирования FMCW и FMICW сигнала в комплексной области

Комплексная огибающая FMICW сигнала в цифровом виде

$$u[n] = g[n] \left( \underbrace{\cos \left( 2\pi \left( f_{C1}t[n] + \frac{\dot{f}}{2}t^2[n] \right) \right) + j \sin \left( 2\pi \left( f_{C1}t[n] + \frac{\dot{f}}{2}t^2[n] \right) \right)}_{Q[n]} \right)$$



Осциллограмма FMICW сигнала (1) и управляющего сигнала для антенного коммутатора (2) на выходе USRP

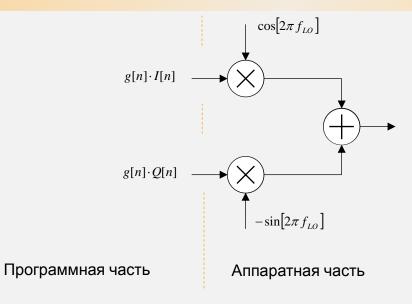



Схема формирования FMCW и FMICW сигнала на основе универсального квадратурного модулятора

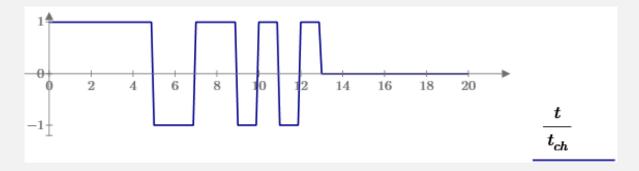
 $B = f_2 - f_1$  - Полоса зондируемых частот

 $f_{C1} = \frac{B}{2} - \frac{f_S}{2}$  - начальная частота

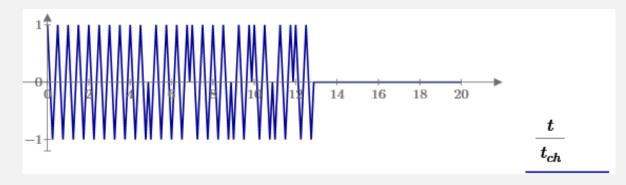
 $t[n] = t[0] + \frac{n}{f_s}$  - дискретное время

 $f_s$  - частота дискретизации

 $\dot{f}$  - скорость изменения частоты


g[n] - переключающая функция

 $f_{{\scriptscriptstyle LO}}$  - частота гетеродина


#### Алгоритм формирования DSSS сигнала в комплексной области

Комплексная огибающая DSSS сигнала в цифровом виде

$$u[n] = g[n](I[n] + jQ[n])$$
 где  $I[n] = k[n]$   $Q[n] = 0$ 



Форма DSSS сигнала на входе USRP



Форма DSSS сигнала на выходе USRP

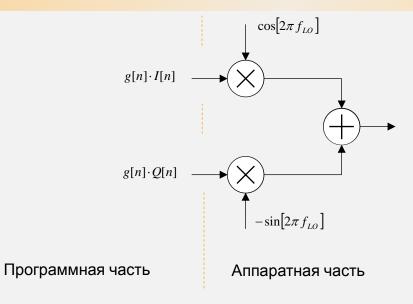



Схема формирования DSSS сигнала на основе универсального квадратурного модулятора

$$B = f_2 - f_1$$
 - Полоса зондируемых частот

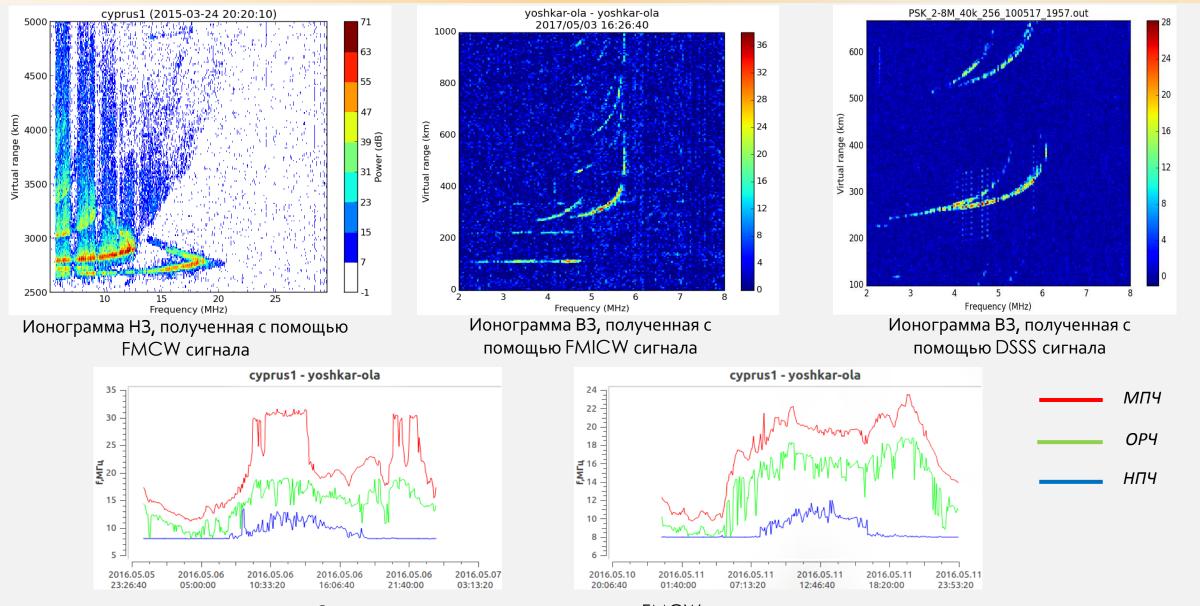
$$f_{C1} = \frac{B}{2} - \frac{f_S}{2}$$
 - начальная частота

$$t[n] = t[0] + \frac{n}{f_s}$$
 - дискретное время

$$f_s$$
 - частота дискретизации

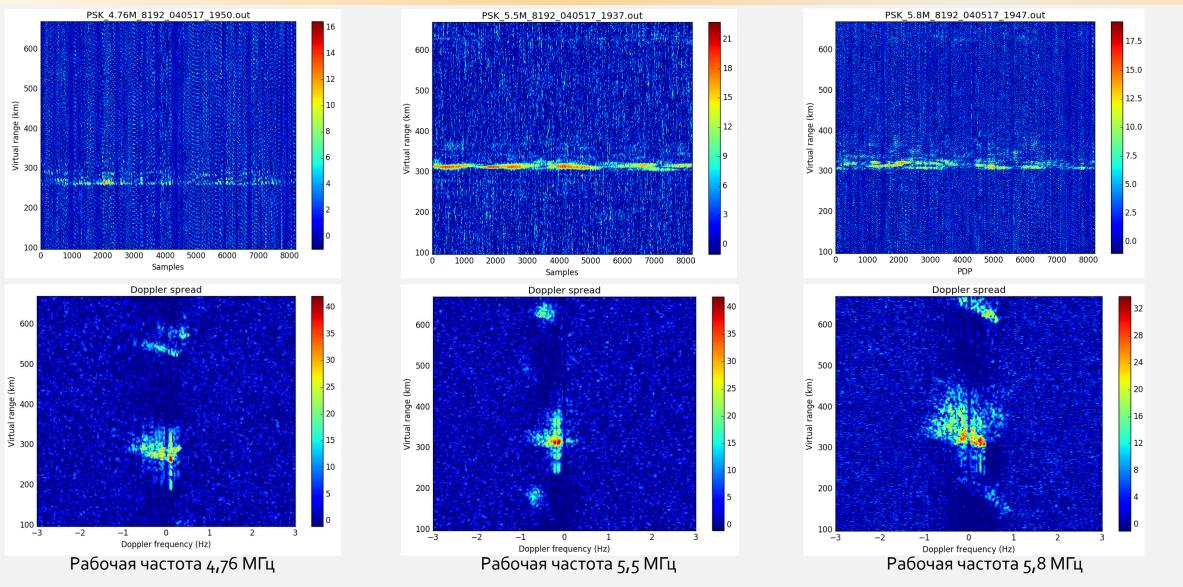
$$k[n]$$
 - Кодовая последовательность

$$g[n]$$
 - переключающая функция


$$f_{LO} = f_{C1} + \Delta f$$
 - частота гетеродина

 $\Delta f$  - шаг несущей частоты

#### Технические характеристики универсального ионозонда


| Диапазон частот                                                            | 1,9 – 30 МГц                           |  |
|----------------------------------------------------------------------------|----------------------------------------|--|
| Форма сигнала с расширенным спектром                                       | FMCW, FMICW, DSSS                      |  |
| Пиковая мощность передачи                                                  | до 30 Вт                               |  |
| Тип приемо-передающей антенны                                              | T2FD                                   |  |
| Частота дискретизации принимаемого сигнала                                 | 100 МГц                                |  |
| Полоса сигнала                                                             | до 25 МГц                              |  |
| Скорость сканирования (изменения) частоты в режиме FMCW                    | 0,05 – 2 МГц/с                         |  |
| Диапазон наблюдаемых задержек при скорости 100кГц/сек в режиме Н3 (FMCW)   | 0 — 200 мс.                            |  |
| Диапазон наблюдаемых высот в режиме ВЗ для стандартных параметров сигналов | 30-1000 км (FMICW)<br>78-768 км (DSSS) |  |
| Шаг перестройки частот в режиме DSSS                                       | любой                                  |  |
| Возможность когерентного накопления импульсов в режиме DSSS                | 4-8192 импульса                        |  |

#### Верификация разработки в реальных физических экспериментах



Суточные ходы, полученные с помощью FMCW сигнала

# Экспериментальные ФРК полученные при ВЗИ универсальным ионозондом с маломощным DSSS сигналом



Когерентное накопления увеличивает отношение С/Ш на 16 дБ и более, что позволяет использовать для зондирования маломощные сигналы порядка 20 Вт.

#### Выводы

- 1. Создан не имеющий аналогов универсальный по методу зондирования и используемым СРС ионозонд, в котором реализованы методики и алгоритмы с использованием современных полностью цифровых методов синтеза и обработки сигналов в комплексной области.
- 2. Верификация разработки в реальных физических экспериментах показала, что ионозонд позволяет получить как характеристики ионосферы, так и ионосферных каналов КВ связи при низкой мощности (менее 20Вт) зондирующих сигналов и использовании стандартных широкополосных приёмо-передающих антенн типа T2FD.

Спасибо за внимание.