УДК 524.1

РАДИОИЗЛУЧЕНИЕ ШАЛ С ЭНЕРГИЕЙ ВЫШЕ 10 ЭэВ

С.П. Кнуренко, И.С. Петров

Институт космофизических исследований и аэрономии им. Ю.Г. Шафера СО РАН, Якутск, Россия igor.petrov@ikfia.ysn.ru

AIR SHOWER RADIO EMISSION WITH ENERGY OF MORE THAN 10 EeV

S.P. Knurenko, I.S. Petrov

Yu.G. Shafer Institute of Cosmophysical Research and Aeronomy SB RAS, Yakutsk, Russia

Аннотация. Приводятся результаты, полученные из измерений радиоизлучения на частоте 30–35 МГц от частиц широкого атмосферного ливня с энергией выше 10¹⁹ эВ. Данные получены на Якутской установке ШАЛ за периоды наблюдения 1986–1989 и за 2009–2014 гг. Впервые на Якутской установке было зарегистрировано радиоизлучение в ливне с рекордной для Якутской установки энергией ~2·10²⁰ эВ.

Ключевые слова: радиоизлучение, ШАЛ, Якутская установка, ФПР.

Abstract. The paper presents the results, obtained from measurements of radio emission at frequency 30–35 MHz of air showers with energy more than 10^{19} eV. The data obtained at the Yakutsk array in the period of 1986–1989 and 2009–2014. For the first time radio emission of the air shower with energy more than 10^{20} eV were registered at the Yakutsk array including radio emission of shower with the energy as high as ~2·10²⁰ eV.

Keywords: radio emission, EAS, Yakutsk array, LDF.

Введение

Метод регистрации радио эмиссии от частиц широкого атмосферного ливня (ШАЛ) основан на движении заряженных частиц в магнитном поле Земли [Kahn, 1966; Falcke, 2003] и эффекте Аскарьяна [Аскарьян, 1961]. По-видимому, оба метода эффективно работают при прохождении потока частиц ливня через атмосферу. Вклад их в генерацию радиоизлучения зависит от условий развития ливня в атмосфере: высоты максимума каскадной кривой, зенитного угла прихода диска ливня на плоскость установки, энергии ШАЛ. Полно исследовать эти механизмы образования радиоизлучения доступно только на установках с комплексной регистрацией частиц ШАЛ: электронов, мюонов, черенковского, ионизационного и радиоизлучений.

Этот метод позволяет не только оценить энергию, но и восстановить картину продольного развития ливня, а именно, глубину максимума развития ШАЛ X_{max} [Apel, 2014; Knurenko, 2015]. В этом смысле радиоизлучение ШАЛ, можно использовать для взаимной калибровки по энергии больших наземных установок [Bezyazeekov, 2016; Apel, 2016; Aab, 2016].

1. Радиоустановка

1.1. Первая очередь

В середине 80-х гг. прошлого столетия на Якутской установке была создана радиоустановка для регистрации напряженности электрического поля в полосе пропускания 30–40 МГц генерируемого заряженными частицами широкого атмосферного ливня [Петров, 2011].

Расстояние между опорами было переменным и составляло 50, 100, 200, 300 и 500 м. На одной опоре устанавливалось две антенны, выполненные в виде двух независимых полуволновых диполей с

ориентацией В–3 и С–Ю. Антенны располагались на высоте λ/4, что обеспечивало максимум диаграммы направленности для излучения приходящего сверху. Площадь радиоустановки составляла 0.35 км².

Симметрирование входов премного тракта с антеннами обеспечивалось кабельным U-коленом. Для усиления сигналов радиоимпульсов применялись унифицированные широкополосные приемники прямого усиления с полосой пропускания 30–35 МГц. Подавление усиления на частоте 29 МГц \geq 40 дБ, ниже 28 МГц \geq 60 дБ. Конструктивно приемники выполнены в виде двух блоков. В блоке, расположенном под антенной, размещался антенный малошумящий усилитель с коэффициентом усиления $K_y \cong 40$ дБ и с выходом, согласованным с кабелем. Во втором блоке, который находится в теплом фургоне, размещался оконечный усилитель с мощным выходом и с $K_y \cong 40$ дБ.

Калибровка. При калибровке вход антенного усилителя отключается от антенны и подключается к выходу калибровочного генератора через радиочастотный кабель. Калибровка выполнялась автоматически без участия оператора через заданные интервалы по времени. Для этой цели использовались дистанционно-управляемые генераторы Г4-151 и ВЧ-переключатели на реле РЭВ-15, которые управлялись центральной ЭВМ. Для повышения точности временной привязки была введена дополнительная синхронизация АЦП от кварцевых генераторов.

АЦП. На первом этапе эксперимента использовались АЦП Ф-4226 с параметрами: время преобразования — 50 нс, точность — 8 разрядов (256 амплитудных точек), емкость ОЗУ-1024 слова (51 мкс). Непрерывная работа преобразователя позволяла сохранять в памяти информацию о радиоимпульсе до поступления на вход сигнала АЦП запуска от «мастера» основной установки ШАЛ. 9-й бит информационного слова являлся признаком данных находящихся в ОЗУ до запуска.

1.2. Современный статус радиоустановки

В 2009 г. в районе Якутской установки для выбора оптимальной частоты регистрации радиоизлучения было повторно, с использованием цифрового анализатора спектра ASA-2332, проведено сканирование частотного спектра от 1 до 100 МГц [Kozlov, 2012], как в работе [Ellingson, 2007]. На частотах до 20 МГц из-за наличия сильных шумов природного происхождения (в основном грозы), не представляется возможным различить импульсы ШАЛ с достаточной эффективностью. Выше 20 МГц, амплитуда галактических шумов уменьшается намного медленнее с частотой, чем грозовые шумы и на частоте 32 МГц составляет 1.0-2.0 мкВ·м⁻¹·МГц⁻¹. Тепловые шумы антенны намного ниже галактических шумов на частотах до 100 МГц и, почти, никак не влияют на наши измерения. Поэтому, оптимальная полоса частот это 30-40 МГц, где ожидается наилучшее отношение сигнал/шум, из-за того, что на более высоких частотах спектр ограничен сильными шумами антропогенного характера, например, широковещательные станции.

Установка состоит из 12 скрещенных под 90° приемных антенн, ориентированных по направлениям В–3, С–Ю, периферийного регистрирующего устройства (ПРУ) и электронного накопителя данных на базе персонального компьютера. ПРУ размещалось непосредственно на территории антенного поля. Антенное поле располагались вблизи центра основной установки ШАЛ и состояло из двух независимых кустов, синхронизация которых осуществлялась с помощью системы GPS. Расстояние между антеннами было 50 м, 100 м и 500 м. Располагались антенны на удалении 50–100 м от станций наблюдения.

Для регистрации высокочастотных сигналов, как и при первых поисковых измерениях радиосигналов от ШАЛ, были использованы полуволновые диполи, ориентированные в направлении В–3, С–Ю и поднятые на высоту $\lambda/4$.

Полоса пропускания радио тракта по уровню 0.7 была 4 МГц, чувствительность ~10 мкВ (2 мкВ·м⁻¹ МГц⁻¹), динамический диапазон усилителя 50 дБ. Приемные каналы построены по принципу прямого усиления сигнала с последующим детектированием. Антенные усилители были помещены в специальные термостабилизирующие контейнеры и располагались непосредственно у антенн. Основные тракты усиления построены по каскадной схеме с рассогласованными контурами. В качестве регистратора используется компьютер типа IBM PC/AT. В качестве аналого-цифровых преобразователей используется быстрые 8-разрядные АЦП ЛА-н10М8РСІ.

Регистрация радиоизлучения использует в качестве триггера один из двух мастеров Якутской установки. Один из двух возможных триггеров — это основная Якутская установка, которая регистрирует ливни на площади 12 км² с энергией выше 10^{17} эВ. Малая черенковская установка (рис. 1) регистрирует ливни на площади 1 км² с энергией 10^{15} – $5 \cdot 10^{17}$ эВ [Петров, 2012]. На рис. 1 приведена схема малой черенковской установки, на которой установлены антенны регистрации радиоизлучения.

Рис. 1. Схема расположения антенн на Якутской установке

Устройство управления регистрацией, сбора и хранения данных было выполнено на базе промышленной ЭВМ с 19 слотами РСІ. У АЦП ЛА-н10М8 число разрядов равно 8, частота дискретизации 100 МГц, емкость буферного запоминающего устройства 2 мегабайта. Частота дискретизации, время «предыстории» и коэффициент передачи входного делителя задаются программно. Для регистрации время дискретизации составляло 10 нс (100 МГц), размер «предыстории» 25 мкс (и 15 мкс истории после триггера), максимальный входной сигнал 1 В. Окончательная запись информации осуществлялась на жесткий диск с параллельным выводом на дисплей ЭВМ.

Калибровка радиоканалов осуществлялась подачей калибровочных радиоимпульсов на вход антенных усилителей. Калибровочные импульсы пропускались через весь тракт и записывались в цифровом виде на жесткий диск вместе с экспериментальными данными.

3. ФПР ливней с энергией выше 10 ЕэВ

На рис. 2 показана функция пространственного распределения (ФПР) радиоизлучения, полученная по ливням с энергиями выше 10¹⁹ эВ [Кнуренко, 2016].

Точки приведены к средней энергии $\langle E_0 \rangle = 1.54 \cdot 10^{19}$ эВ, среднему зенитному углу $\langle \theta \rangle = 43.1^{\circ}$ и показаны в логарифмическом масштабе. Как видно из рис. 2, амплитуда радиосигнала с расстоянием значительно падает, что указывает на связь формы ФПР с максимумом развития каскадной кривой ШАЛ. Расчеты подтверждают эту связь и значит, это свойство можно использовать для оценки X_{max} ШАЛ. Предварительные оценки по X_{max} уже получены на всех радиоустановках.

Как можно видеть из рис. 2, полученная зависимость амплитуды радиоизлучения от расстояния хорошо описывается простым экспоненциальным законом типа:

$$A = \varepsilon \cdot \exp\left(-\frac{R}{R_0}\right). \tag{1}$$

Рис.2. ФПР ливней с энергией $E ≥ 10^{19}$ эВ

Заключение

Долговременные наблюдения радиоизлучения ШАЛ на Якутской установке доказали существование радиоизлучения при энергии ≥10 ЭэВ и это позволило получить некоторые характеристики радиоизлучения при таких энергиях:

• Функцию затухания радиосигнала ШАЛ от расстояния при энергии 1.54·10¹⁹ эВ и ее градиент;

• Доказали наличие радиоизлучения ШАЛ при энергиях 10²⁰ эВ, т. е. в самых больших ливнях, зарегистрированных на Якутской установке [Artamonov, 1990];

• Значительный сигнал в сильнонаклонных ливнях и влияние магнитного поля на форму ФПР, что еще раз подтверждает роль геомагнитного механизма в генерации радиоизлучения [Петров, 2011].

Список литературы

Аскарьян Г.А. // ЖЭТФ. 1961. Т. 41, № 2. С. 616-618.

Петров З.Е., Борщевский Д.С., Кнуренко С.П. и др. // Вестник СВФУ. 2011. Т. 8. № 4. С. 5–10.

Петров З.Е., Борщевский Д.С., Кнуренко С.П. и др. // Наука и образование. 2012. Т. 65, № 1. С. 7-1.

Кнуренко С.П., Петров И.С. // Письма в ЖЭТФ.

2016. T. 104, № 5. C. 305–309. Aab A., et al. // Phys. Rev. D. 2016. V. 93. P. 12005. Apel W., et al. // Phys. Rev. D. 2014, V. 90, P. 062001. Apel W., et al. // Phys. Lett. B. 2016. V. 763. P. 179–185. Artamonov V.P., Egorov T.E., Efimov A.N., et al. // Proc. 21st ICRC. Adelaide, 1990. V. 9. P. 210.

Bezyazeekov P., Budnev N., Gress O., et al. // J. Cosmology and Astroparticle Phys. 2016. V. 01 P. 052.

Ellingson S., Simonetti J., Patterson C. // IEEE Trans. Antennas and Propag. 2007. V. 55, N 3. P. 826-831.

Falcke H., Gorham P. // Astroparticle Physics. 2003. V. 19. P. 477–494.

Kahn F., Lerche I. // Proc. R. Soc. A. 1966. V. 289. P. 206.

Knurenko S., Petrov I. // J. Phys.: Conf. Ser. 2015. V. 632. P. 012100.

Kozlov V., Knurenko S., Mullavarov V., et al. // Proc. 1st Int. Conf. Electromagnetic Method of Environmental Studies. 2012. P. 215–217.