УДК 550.388.2; 621.3

## РЕЗУЛЬТАТЫ ИЗМЕРЕНИЯ ПЕРЕДАТОЧНОЙ ФУНКЦИИ ЧЕТЫРЕХПОЛЮСНИКА С ПОМОЩЬЮ ЛЧМ-СИГНАЛА

#### А.А. Науменко, А.В. Подлесный

### RESULTS OF MEASURING QUADRIPOLE TRANSFER FUNCTION BY LFM SIGNAL

#### A.A. Naumenko, A.V. Podlesny

Измерения передаточной функции проводились на макете последовательного колебательного контура с заранее рассчитанными АЧХ и ФЧХ. Характеристики макета были проконтролированы с помощью гармонического сигнала, согласно определению передаточной функции. Измеренные АЧХ и ФЧХ макета с помощью ЛЧМ сигнала хорошо согласуются с результатами, полученными с помощью гармонического сигнала и результатами численного моделирования.

To perform simulation, we manufactured the model that was series oscillatory circuit with pre-calculated characteristics. Characteristics manufactured model were measured by harmonic signal according to the definition of the transfer function. The amplitude-frequency characteristics and the phase-frequency characteristics, obtained using method of the LFM sounding, were appropriate to the mathematical model and data of measure using harmonic signal.

#### Введение

Передаточная функция наиболее общее понятие, используемое при анализе стационарных систем. Определяемая как отклик системы на монохроматическое колебание, в случае, если стационарная система описывается дифференциальным или интегральным оператором, передаточная функция является Фурье образом импульсного отклика, который, в свою очередь, является решением задачи с дельта функцией в правой части и носит название, либо фундаментального решения, либо функции Грина.

Обычно используемый способ определения характеристик передаточной функции заключается в том, что на вход системы подают гармонические сигналы различных частот, измеряют выходные сигналы системы на каждой из частот и определяют передаточную функцию системы. В рамках данной работы будет рассмотрен метод получения передаточной функции с помощью специальной обработки ЛЧМ-сигнала [Ильин, 2007]. Практическая реализация данного метода появилась сравнительно недавно и требует проведения различных тестовых и калибровочных измерений для подтверждения качества ее работы. Одним из наиболее информативных способов проверки качества работы методики является проведение прямых измерений параметров системы (четырехполюсника) с хорошо известной передаточной функцией. Проведение таких измерений позволит оценить точность измерения передаточной функции с помощью ЛЧМ-сигнала.

#### Цель работы

Сравнить передаточную функцию, полученную специальной обработкой ЛЧМ-сигнала, с математической моделью передаточной функции и проконтролировать ее с помощью гармонического сигнала.

Четырехполюсник с известной передаточной функцией

В качестве четырехполюсника с известной передаточной функцией был выбран последовательный колебательный контур с сосредоточенными параметрами, обладающий ярко выраженной АЧХ и ФЧХ [Баскаков, 1988]. Зависимость частоты резонанса от параметров элементов контура выражается формулой Томсона (1).

$$f = \frac{1}{2\pi\sqrt{LC}} \qquad (1)$$

Используемое в данной работе ЛЧМ оборудование имеет диапазон рабочих частот от 1 до 30 МГц, поэтому для того, чтобы результаты измерений отразили основные характерные особенности АЧХ и ФЧХ контура частота его резонанса должна лежать в средней части этого диапазона. Подбором элементов из стандартного ряда номиналов Е24, был спроектирован последовательный колебательный контур с входным и выходным каскадами на операционном усилителе и расчетной резонансной частотой 10.7 МГц.

Итоговая принципиальная схема макета контура представлена на рис. 1.

АD8056 представляет собой сдвоенный операционный усилитель с полосой пропускания до 300 МГц. При изготовлении макета использованы радиокомпоненты с классом точности основной характеристики 5 %.

# Расчет и измерение передаточной функции макета

Расчет передаточной функции связан с составлением и решением системы дифференциальных уравнений описывающих систему. Составление данных уравнений с учетом погрешностей и паразитных эффектов реальных элементов схемы представляет собой нетривиальную задачу, выходящую за рамки данной работы, поэтому все элементы схемы были приняты идеальными.

Коэффициент передачи последовательного колебательного контура с согласующими каскадами описывается следующим уравнением [Гоноровский, 1986]:

$$K(i\omega) = A \frac{\frac{1}{i\omega C}}{R + i\omega L + \frac{1}{i\omega C}} = \frac{A}{\left(\left(1 - \omega^2 LC\right) + i\omega RC\right)}$$
(2)

Использование согласующих каскадов добавляет в уравнение постоянный множитель *A*, равный произведению коэффициентов усиления входного и выход-



Рис. 1. Принципиальная схема макета.



Рис. 2. Схема измерения передаточной функции с помощью гармонического сигнала.



Рис. 3. Схема измерения передаточной функции с помощью ЛЧМ-сигнала.



*Рис. 4.* АЧХ макета: без маркеров – измеренная с помощью ЛЧМ-сигнала; квадратные маркеры – измеренная с помощью гармонического сигнала; треугольные маркеры – результат численного моделирования.



*Рис. 5.* ФЧХ макета: без маркеров – измеренная с помощью ЛЧМ-сигнала; квадратные маркеры – измеренная с помощью гармонического сигнала; треугольные маркеры – результат численного моделирования.

ного каскадов. Коэффициенты усиления входного и выходного каскадов одинаковые и равны двум, итоговое значение множителя соответственно равно четырем.

Измерение передаточной функции монохроматическим сигналом проводилось с помощью генератора гармонических сигналов и осциллографа, по схеме, представленной на рис. 2.

Для измерения передаточной функции с помощью ЛЧМ-сигнала использовался лабораторный стенд ЛЧМ-ионозонд, из которого был удален усилитель мощности (рис. 3). Выходными данными ЛЧМионозонда является передаточная функция среды [Ильин, 2007], что стало возможно после модернизации приемника ЛЧМ-сигналов [Подлесный, 2014].

Измерение передаточной функции проводили со скоростью 500 кГц/сек, от частоты 1 МГц до частоты 20 МГц. Для исключения влияния внутренних задержек ЛЧМ-синтезатора и приемника измерения ПФ были проведены дважды: один раз без макета контура и один раз с установленным макетом контура. Разность полученных ФЧХ, соответствующая ФЧХ макета контура, приведена на рис. 5 на графике без маркеров. АЧХ макета представлена на рис. 4 на графиках без маркеров.

Для сравнения на рис. 4 и 5 также представлены результаты измерений и расчетов другими методами. На них треугольными маркерами помечены модуль и фаза выражения (2), представляющие собой результат расчета АЧХ и ФЧХ макета в полосе от 1 до 20 МГц. Квадратными маркерами представлены результаты пошаговых измерений с помощью гармонического сигнала с шагом в 100 кГц.

Измеренная АЧХ макета с помощью ЛЧМ-сигнала хорошо согласуется с математической моделью и измеренной АЧХ с помощью гармонического сигнала, с отклонением по форме не более 5 %. Уменьшение добротности на 14 %, полученное в результате измерений реального контура по сравнению с результатами численного моделирования, скорее всего, связано с паразитным активным сопротивлением элементов реального контура. Полученная с помощью ЛЧМ-сигнала ФЧХ хорошо согласуется с математической моделью и с ФЧХ измеренной с помощью гармонического сигнала, с отклонением по форме не более 5 %.

#### Выводы

Полученные результаты показывают, что АЧХ и ФЧХ, полученные с помощью ЛЧМ-сигнала, хорошо согласуется как с математической моделью, так и с характеристиками, полученными с помощью гармонического сигнала. Небольшое расхождение результатов измерений реального макета и расчетов может быть связано с классом точности используемых радиокомпонентов и паразитными эффектами реальных элементов схемы.

Работа выполнена при поддержке РФФИ грант №13-05-00979

#### СПИСОК ЛИТЕРАТУРЫ

Баскаков С.И. Радиотехнические цепи и сигналы. М.: Высшая школа, 1988. 448 с.

Гоноровский И.С. Радиотехнические цепи и сигналы: Учебник для вузов. 4-е изд. М.: Радио и связь. 1986. С. 152.

Ильин Н.В., Давыденко М.А., Хахинов В.В. Моделирование регистрируемого спектра и восстановление передаточной функции широкополосного коротковолнового ионосферного радиоканала при зондировании ЛЧМсигналом // Известия вузов. Радиофизика. 2007. Т. L, № 5. С. 387–395.

Подлесный А.В., Лебедев В.П., Ильин Н.В., Хахинов В.В. Реализация метода восстановления передаточной функции ионосферного радиоканала по результатам зондирования ионосферы непрерывным ЛЧМ сигналом // Электромагнитные волны и электронные системы. 2014. № 1. С. 63–70.

Институт солнечно-земной физики СО РАН, Иркутск, Россия