ВЛИЯНИЕ НАНОУГЛЕРОДНЫХ МАТЕРИАЛОВ НА СТРУКТУРУ, МЕХАНИЧЕСКИЕ И ТЕПЛОВЫЕ СВОЙСТВА ПОЛИАМИДА-6

¹Н.Б. Курбонов, ²Г.Б. Курбонов

EFFECT OF NANOCARBON MATERIALS ON STRUCTURE, MECHANICAL AND THERMAL PROPERTIES OF POLYAMIDE-6

¹N.B. Kurbonov, ²G.B. Kurbonov

В работе изучено влияние наноуглеродных материалов (фуллереновая сажа, фуллерен C_{60} , фуллереновая чернь и наноалмазы) на структуру, тепловые и механические свойства полиамида-6. Показано, что внедрение малых количеств наноуглеродных материалов оказывает специфичное влияние на структуру и физические свойства полиамида.

In the paper were studied the effect of nanocarbon materials (fullerene soot, fullerene C_{60} , fullerene black and nanodiamonds) on the structure, thermal and mechanical properties of polyamide-6. It is shown that the introduction of small amounts of nanocarbon materials has a specific effect on the structure and physical properties of polyamide.

Полиамиды, как конструкционные материалы широко применяются в различных областях техники и быта [Нильсен, 1979; Голд, 1974]. С появлением наноуглеродных материалов возникла необходимость модификации полиамидов наночастицами для улучшения их эксплуатационных характеристик и расширения границы работоспособности [Туйчиев, 2007; Туйчиев, 2011; Туйчиев, 2012].

Цель работы заключается в изучении влияния наноуглеродных материалов (НУМ) на структуру, деформационное и термическое поведение полиамида-6. В качестве объектов исследования использовали порошки из полиамида-6 (ПА-6) и наноуглеродных материалов таких как фуллерен С60 с химической чистотой 99.7 %, фуллереновая сажа (ФС) с 12 % содержанием фуллерена С₆₀, фуллереновая чернь (ФЧ) и наноалмазы (НА). Композитные пленки получали методом термобароспекания из смеси порошка ПА-6 с НУМ при температуре 2800С и давлении 50 атм. Концентрацию НУМ меняли в интервале С=0-10 % масс. Спрессованные пленки быстро охлаждали в водяной бане при 200. Механические свойства образцов изучали на разрывной машине РМ-1 со скоростью деформации 0.01 с-1, тепловые свойства композитов исследовали на термоанализаторе DSC 204F Netzsch со скоростью нагревания и охлаждения 10 град./мин., рентгенографические исследования на больших и малых углах рассеяния проводили соответственно на дифрактометрах ДРОН-2 и КРМ-1, использовали медное излучение фильтрованное никелем.

Полиамид-6 (поли-є-капроамид, найлон-6, капрон) – синтетическое полиамидное волоконо, получаемое из поликапроамида – продукта полимеризации капролактама. Формула полимера имеет вид: [–HN(CH₂)₅CO–]_п. Впервые поликапролактам как полимер для формования полиамидного волокна (под названием перлон) был синтезирован в 1938 г. в Германии Паулем Шлаком, работавшим в компании І.G. Farben. В 1943 г. в Германии было создано промышленное производство поликапролактама мощностью 3.5 тыс. тонн в год с использованием в качестве исходного сырья фенола, сначала производилось грубое капроновое волокно, применявшееся в качестве искусственной щетины, затем на основе поликапролактамовых волокон стали производить

парашютный шелк, корд для авиационных шин и буксировочные тросы для планеров.

В бывший СССР Рымашевская Ю.А., Кнунянц И.Л. и Роговин в 1942 г. показали возможность полимеризации є-капролактама в линейный полимер и осуществили (в 1947 г.) серию работ по синтезу волокнообразующих полиамидов, в ходе которых изучили условия бекмановской перегруппировки оксимов циклогексана в капролактам, определили оптимальные условия полимеризации лактамов и очистки полиамида от мономера, первое производство поликапролактама в СССР было запущено в 1948 г. в городе Клин, Московской области.

Ряд свойств полиамидов зависит от их кристаллического устройства, в частности от содержания воды. Полиамиды взаимодействуют с окружающей средой обратимо впитывая влагу, при этом вода собирается в аморфных областях полиамида. Так, например в окружении воздуха, полиамид-6 принимает примерно 2.5–3.5 % воды, а полиамид 610 около 0.5 %. Влагопоглощение полиамидов напрямую влияет на их долговечность.

Таблица 1 Некоторые свойства полиамидов

	Полиамиды						
	6	66 (6.6)	610 (6.10)	612 (6.12)	11	12	
Температура плавления, °C	220	260	215	213	198	178	
Плотность, $\Gamma/\text{см}^2$	1.084-1.235	1.13–1.14	1.04	1.3	1.03	1.01	

Как показали рентгенографические исследования, большеугловые рентгенограммы (БР) композитов ПА-6+ФС, ПА-6+ФЧ, ПА-6+НА были практически идентичными. На БР образцов наблюдается аморфное гало, положение максимума 20 и радиальная полуширина Δ 20 которого с увеличением концентрации НУМ остаются постоянными, а интенсивность гало несколько снижается, следы агрегации НУМ не обнаруживаются (рис. 1, a, кривые 1 и 2). Следовательно, молекулы НУМ не взаимодействуют с агрегациями молекул матрицы. На БР системы ПА-6+С $_{60}$ начиная с 3 % на фоне аморфного гало проявляется рассеяние от кристаллических агрегатов С $_{60}$ и с ростом содержания С $_{60}$ интенсивность рефлексов фуллерена С $_{60}$ повышается, но при

этом положение аморфного гало и его полуширина остаются постоянными (рис. 1, а, кривая 3). Малоугловые рентгенограммы (МР) всех композитов и их изменения с увеличением концентрации НУМ также однотипны. На МР композита ПА-6+ФС наблюдается диффузное рассеяние, интенсивность которого растет с увеличением концентрации НУМ (рис. 1, б). Темп роста интенсивности рассеяния на малоугловых рентгенограммах ПА-6+НА и ПА-6+ФС выше в сравнении с ПА-6+ФЧ и ПА-6+С $_{60}$. Это свидетельствует о том, что, во-первых, внедрение наночастиц сопровождается изменением микрогетерогенности структуры, порождением большого числа микронеоднородностей типа пор, трещин и др., обуславливающих повышение интенсивности диффузного рассеяния (рис. 1, б); во-вторых, наночастицы НУМ в большой степени располагаются в разрыхленных аморфных областях композитов, способствуя развитию процессов структурной и межструктурной пластификации матрицы. Это, в свою очередь, приводит к изменению механических и тепловых свойств композитов [Туйчиев, 2011; Туйчиев, 2012].

На рис. 2 в качестве примера приведены деформационные кривые композитов ПА-6+ФС, поскольку вид кривых других исследованных композитов одинаков. Результаты определения механических характеристик композитов – предела прочности σ и текучести σ_T , предельной деформации образца ϵ и текучести ϵ_T , и их изменения сведены в табл. 1. Из табл. 2 видно, что рост концентрации НУМ в интервале C=0-3 % сопровождается постепенным снижением σ и σ_T , ϵ и ϵ_T , а затем при C>3 % их резким уменьшением. Лишь в композите ПА-6+ФЧ наблюдается сохранение и/или медленные изменения σ , σ_T , и ϵ , ϵ_T с увеличением доли добавок НУМ, что важно для практики.

Рис. 1. Большеугловые (*a*) и малоугловые (*б*) рентгенограммы композита ПА-6+ФС: а: 1 – чистый ПА-6; 2 – ПА-6+10 % ФС; 3 – ПА-6+3 % С₆₀; δ : 1 – С=0; 2 – 1; 3 – 3; 4 – 5; 5 – 10 % ФС.

На рис. 3. представлены типичные термограммы композита ПА-6+ФС в 1-ом и во 2-ом циклах нагревания и охлаждения, а результаты термографических исследований композитов сведены в таблицу 3. Из рис. 3 и табл. 3 видно, что в 1-ом цикле нагревания на всех термограммах композитов в интервале температур T=60-1400 $^{\circ}$ наблюдаются широкие эндопики с максимумами в области T=100-1100 $^{\circ}$, а также синглетный эндопик плавления $T_{\rm пл}$ =220.5 $^{\circ}$, при охлаждении образцов наблюдается экзопик кристаллизации $T_{\rm k}$ =187 $^{\circ}$.

Таблица 2. Механические свойства композитов.

Композит	σ, МПа	ε, %	Е, МПа	$σ_T$, ΜΠα	ε _T , %
ПА-6. исх.	75	290	280	48	40-50
ПА-6+1 % ФС	46	165	920	37	15-20
ПА-6+3 % ФС	43	40	2000	42	10-12
ПА-6+5 % ФС	41	20	2000	_	-
ПА-6. исх.	75	290	280	45	25-30
ПА-6+ 1 % ФЧ	75	260	240	37	15-20
ПА-6+ 3%ФЧ	63	220	260	37	15-20
ПА-6+ 5 % ФЧ	50	170	280	30	10–15
ПА-6+ 10 % ФЧ	40	80	260	37	5-10
ΠA-6+1 % C ₆₀	62	260	310	26	15-20
ПА-6+5 % С ₆₀	26	140	290	_	-
ПА-6+10 % С ₆₀	10	40	240	-	-
ПА-6 исх.	75	290	280	47	40-50
ПА-6+1 % НА	75	280	280	33	40
ПА-6+3 % НА	51	10	880	-	_
ПА-6+5 % НА	39	10	880	_	_
ПА-6+10 % НА	32	10	880		_

Рис. 2. Кривые деформации композитов ПА-6+ФС. • − 1 − C=0; \blacktriangle − 2 − 1; x − 3−3; \circ − 4−5; + − 5 − 10 % ФС.

Рис. 3. Термограммы композита ПА-6+ФС во 2-ом цикле теплового воздействия.

Влияние наноуглеродных материалов на структуру, механические и тепловые свойства полиамида-6

Компонента	1 цикл	2 цикл		
	$T_{\rm mr}$, 0°C	<i>T</i> пл 1, °С	<i>T</i> пл2, °С	T_{κ} , °C
исх. ПА-6	220.5	211	220	187
ПА-6+1 % С ₆₀	218	211	215	187
ПА-6+3 % С ₆₀	217	211	215	187
ΠA-6+5 % C ₆₀	216	211	215	187
ΠA-6+10 % C ₆₀	216.5	210	216.5	187
исх. ПА-6	220.5	212	220	187
ПА-6+1 % ФС	220.5	213	216	188.5
ПА-6+3 % ФС	218	212	217	186
ПА-6+5 % ФС	218	211	217	185
ПА-6+10 % ФС	216	211	216	184
ПА-6+1 % ФЧ	220	214	218	187
ПА-6+3 % ФЧ	220	212	218	184
ПА-6+5 % ФЧ	219	213	217.5	186
ПА-6+10 % ФЧ	218	212	215	183
ПА-6+1 % НА	219.5	214	218	187
ПА-6+3 % НА	220	214	218	187
ПА-6+5 % НА	219	214	217	188
ПА-6+10 % НА	219	214	218	188

С ростом концентрации НУМ в 1-ом цикле $T_{\rm пл}$ (С) композитов ПА-6+С $_{60}$ и ПА-6+ФС уменьшается на 4° , в то время как для других композитов это изменение составляет 1–20, при постоянстве T_{κ} =187 $^{\circ}$. Во 2-ом цикле нагревания наблюдается дублетный пик плавления с $T_{\rm 1nn}$ \approx 212 $^{\circ}$ и $T_{\rm 2nn}$ =220.5 $^{\circ}$, интенсивность 2-го пика всегда несколько больше в сравнении с первым. С ростом доли НУМ интенсивность 2-го эндопика снижается до уровня 1-го пика и/или же сливается с ним, причем средние значения $T_{\rm 2nn}$ (С) и разности ΔT = $T_{\rm 2nn}$ (С) — $T_{\rm 1nn}$ (С) для всех композитов остаются практически неизменными как в 1-ом цикле теплового воздействия.

Перейдем к структурной интерпретации термограмм. В 1-ом цикле нагревание охлаждение доминирующим является аморфное состояние ПА-6 (δ -форма), во 2-ом цикле теплового воздействия происходит полиморфное превращение в структуре т. е. δ -форма трансформируется в α - и γ -формы кристаллитной структуры с близкими температурами плавления (для -формы температура плавления T_1 и для

 γ -формы T_2). Как отмечается в [Джейл, 1968] γ -форма ПА-6 относительно нестабильна в сравнении с — формой; при внешних воздействиях (температура, вытяжка и др.) наблюдается $\gamma \leftrightarrow \alpha$ переход в структуре ПА-6. По-видимому, структурными факторами обусловлены наблюдаемые изменения на термограммах композитов.

Таким образом, из результатов исследований влияние НУМ на структуру и свойства пиамида-6 специфично и в полимерах разного класса оно проявляется по разному.

СПИСОК ЛИТЕРАТУРЫ

Джейл Ф.Х. Полимерные монокристаллы. Л.: Химия, 1968. 552 с.

Голд Р.Ф. Многокомпозитные полимерные системы. М.: Химия, 1974. 327c.

Нильсен Л. Механические свойства полимеров и полимерных композиций. М.: Химия, 1979. 312 с.

Туйчиев Ш., Гинзбург Б.М., Рашидов Д. и др. Влияние фуллерена С60 на структуру и механические свойства полиэтилена: технологический аспект // Высокомолек. соед. Сер. А. 2011. Т. 53, № 6. С. 883–896.

Туйчиев Ш., Гинзбург Б.М., Рашидов Д. и др. Влияние фуллерена C_{60} на структуру и механические свойства тонких пленок из полиметилметаклирата и других карбоцепных полимеров винилового ряда: технологический аспект // Высокомолек. соед. Сер. А. 2012. Т. 54, № 8. С. 1283–1296.

Туйчиев Ш., Гинзбург Б.М., Рашидов Д. и др. Влияние фуллерена C_{60} на структуру и физические свойства полиэтилена // Известия АН РТ. 2007. Т. 129, № 4. С. 68–72.

¹Таджикский национальный университет, Душанбе, Таджикистан
²Худжандский государственный университет имени Б.Г. Гафурова, Худжанд, Таджикистан