УДК 520.24; 535.515

ЭЛЕКТРООПТИЧЕСКИЕ МОДУЛЯТОРЫ ПОЛЯРИЗОВАННОГО ИЗЛУЧЕНИЯ

А.Г. Цаюкова

THE ELECTRO-OPTICAL MODULATOR OF POLARIZED RADIATION

A.G. Tsayukova

Доклад содержит описание новых технологических решений в конструкции электрооптического модулятора и методов прецизионной обработки пластин кристалла DKDP. Проведено сравнение характеристик собранного электрооптического фазового модулятора с характеристиками модуляторов ранних конструкций. Также проведены испытания с целью расширения углового поля модулятора нового образца.

The report contains a description of the methods of precision processing of DKDP crystal plates and new technological solutions in the design of the modulator. The characteristics of the assembled electro-optical phase modulator are compared with the characteristics of early designed modulators. The testing in order to increase of the angular field of new designed modulators was also carried out.

Введение

Электрооптические модуляторы (ЭОМ) являются приборами для управления пространственновременными параметрами оптического излучения. Электрооптический эффект, возникающий в некоторых типах кристаллов под действием внешнего электрического поля, применяется для модуляции интенсивности и фазы оптического излучения. Такая модуляция находит многочисленные применения в различных типах устройств [Ярив, 1987; Бережной, 1999].

На сегодняшний день мы сталкиваемся с проблемой создания надежных устройств модуляции поляризованного излучения, являющихся частью астрофизических приборов для мониторинга магнитных полей на Солнце. Уровень надежности модулятора обуславливается свойствами и качеством оптической обработки электрооптического кристалла, конструкцией прибора в целом и условиями его эксплуатации. Историю развития и модернизации конструкции электрооптических модуляторов можно проследить в работах [Beckers, 1968; Степанов, 1975; Бородин, 2004].

Обработка пластин водорастворимого кристалла DKDP

Напряжение на электрооптический кристалл (1 на рис. 2) подается через прозрачные токопроводящие покрытия, которые наносятся непосредственно на его поверхности, а не на дополнительные стекла. Такой способ расположения электродов относительно кристалла позволил повысить точность измерения поляризационных характеристик и расширить диапазон рабочих частот модулятора. В то же время возросли требования к качеству поверхности электрооптического кристалла, так как нанесение покрытия может ухудшить чистоту детали на несколько классов.

Одна из целей работы заключалась в выявлении метода, материала полирования и типа полировальника, обеспечивающего необходимые параметры (шероховатость, геометрия) поверхности кристалла и в отработке технологического процесса изготовления пластин DKDP.

Кристалл DKDP является оптически одноосным, гигроскопичным. При влажности воздуха около 93 %

кристалл начинает поглощать влагу и растворяться. Гигроскопичность и хрупкость кристалла необходимо учитывать при его обработке и при конструировании прибора, предназначенного для работы в нормальных и отличных от нормальных атмосферных условиях.

Обработке подверглись пластины кристалла DKDP, вырезанные перпендикулярно оптической оси, диаметром 30 мм и толщиной 2 мм. В процессе обработки DKDP были проведены механическое (МП) и химико-механическое полирование (ХМП) с применением смоляных, а также ранее не применяемых синтетических полировальников (табл. 1).

Из-за гигроскопичности и хрупкости кристалла DKDP стандартные процессы полирования оптического стекла не могут быть применены для их обработки. Поэтому для ХМП использовалась обратная эмульсия по типу «вода в масле», состоящая из следующих компонентов: додеканол, Тритон Х-100, дистиллированная вода. Процентное содержание каждого из трех компонентов аналогично их процентному содержанию, приведённому в работе [Wang, 2010]. МП осуществлялось на смоляных полировальниках с применением суспензии, дисперсионной фазой которой являлся алмазный синтетический порошок (АСМ) 1/0 (овальный), а дисперсионной средой – ДПМЗ (Деполимеризат Д-4, или октаметилциклотетрасилоксан) – маслянистая бесцветная жидкость без механических примесей (производство ООО «Пента-91»).

Кристаллы обрабатывались на станках СД-03 для индивидуальной обработки. В процессе полирования нерабочая поверхность детали покрывалась акриловым клеем для защиты от механических повреждений и влаги.

В зависимости от рабочей температуры в лаборатории (22–24 °C) для МП применялись полировочные смолы различной твердости: СП-10 и СП-13 (без канифоли).

Анализ плоскостности осуществлялся на интерферометре ИТ-100 (производство ОАО «ЛОМО»). Технологический контроль в процессе полирования осуществлялся с помощью микроскопа МБС-2.

В табл. 2 приведены краткие характеристики поверхностей обработанных пластин DKDP (в скобках указано процентное содержание воды в обратной

Типы полировальников и их характеристики

№ п/п	Материал полировальника	Фирма-производитель	Характеристика полировальника					
1	ChemoMet TM	Buehler, Германия	Синтетическая самоклеящаяся ткань для окончатель-					
		_	ной полировки, мягкая, пористая, химически стойкая					
2	MicroCloth TM	Buehler, Германия	Синтетическая самоклеящаяся ткань для окончатель-					
			ной полировки – длинно ворсовый искусственный					
			шелк, мягкий, эксплуатационно гибкий					
3	TriDent [™]	Buehler, Германия	Синтетическая самоклеящаяся ткань для предвари-					
			тельной полировки, мягкая, прочная, не ворсовая					
4	СП-10	НПП «Фокус», г.Санкт-	Смола полировочная № 10					
		Петербург	_					
5	СП-13	НПП «Фокус», г.Санкт-	Смола полировочная № 13 (без канифоли)					
		Петербург						

Таблица 2.

Моториод но	Метод полирования					
материал по-		МΠ				
лировальника	A (12 %)	B (16 %)	C (20 %)	ДПМЗ/АСМ 1/0		
ChemoMet TM	Травления нет;	Травления	Травления			
	Ласины	нет;	нет;			
		Количество	Чистота	-		
		ласин уве-	без улуч-			
		личилось	шений			
	m	Ŧ	**			
M1croCloth ^{1M}	Гравления нет;	Гравления	Частичное			
	Ласины	нет;	травление;			
		Количество	Чистота	-		
		ласин уве-	без улуч-			
		личилось	шений			
TriDent [™]	Травления нет;			Травления нет;		
	Незначительное			Незначительное		
	количество			количество		
	ласин		_	ласин;		
				Полировальник		
				плохо формует		
				обрабатываемую		
				поверхность		
СП				Травления нет;		
		-	-	Полировальник		
	_			хорошо форми-		
	-			рует поверх-		
				ность кристалла;		
				Ласины		

Результаты ХМП и МП на различных полировальниках

Рис. 1. АСМ-изображение (а); сечение рельефа поверхности кристалла DKDP после МП (б).

эмульсии – 12 %, 16 %, 20 % при постоянной концентрации Тритон X-100, равной 28 %). Время полирования во всех случаях составляло 5–20 мин.

Результаты ХМП показали, что при использовании синтетических полировальников в сочетании с обратной эмульсией додеканол/Тритон Х-100/вода, происходит травление поверхности пластин и не обеспечиваются необходимые параметры чистоты и шероховатости. В результате МП при помощи суспензии ДПМЗ/АСМ 1/0 на синтетическом полировальнике марки TriDentTM и на смоляном полировальнике, в соответствии с техническим заданием, была получена поверхность с отклонением от плоскости, равным 1 кольцу; местная ошибка не превышала 0.5 интерференционного кольца на диаметре 30 мм. При этом на синтетическом полировальнике TriDentTM выполнялась только предварительная полировка, так как он плохо формирует поверхность детали, но характеризуется высокой скоростью съема. На смоляном полировальнике осуществлялась финишная полировка.

Шероховатость рельефа поверхности готовой детали измерялась с помощью сканирующего зондового микроскопа «Смена» на 3–5 участках образцов. Размер скана составлял 5×5 мкм. Поверхность кристалла DKDP после финишного полирования на смоляном полировальнике суспензией ДПМЗ/АСМ 1/0 представлена на рис. 1, а. Шероховатость составила 5–20 нм (рис. 1, б).

Герметизация устройства

Электрооптический модулятор настоящей конструкции является результатом усовершенствования и логическим продолжением конструкций [Бородин и др., патент РФ № 2248601, 2005] и [Прошин и др., патент № 130094, 2013]. Основная задача модернизации заключается в продлении срока службы модулятора.

В процессе эксплуатации электрооптического модулятора конструкции [Прошин и др., патент № 130094, 2013] была выявлена деформация токопроводящего покрытия – оно напоминало мелкоячеистую сетку. В большинстве случаев подобная деформация наблюдалась около кольцевых электродов, которые закрепляются на поверхности кристалла при помощи индиевых колец и далее распространялась к центральной части светового окна.

Основным фактором, оказывающим влияние на долговечность покрытия, является адгезия. Нарушение адгезии может происходить по ряду причин. Вопервых, это обратный пьезоэффект. Поскольку электрооптическим эффектом обладают только пьезокристаллы [Байбородин, 1967], кристалл DKDP при наложении электрического поля меняет свои линейные размеры. Вместе с ним деформируется и токопроводящее покрытие, что со временем приводит к его разрушению. Также деформация может происходить вследствие одновременного воздействия на пленку обратного пьезоэффекта и разного рода напряжений, возникающих в ней. Следующими причинами, нарушающими адгезию, может являться влага в иммерсии и наличие примесей в сформированной пленке.

Для ограничения влияния влаги на работоспособность прибора было предпринято следующее. После того, как защитные стекла были соединены с кристаллом капиллярным слоем иммерсии, модулятор помещался в емкость с иммерсией и «прокачивался» в вакууме в течение 60–120 мин. Затем паз (11 на рис. 2) между защитным стеклом и контактным кольцом, также как и торец кристалла, был заполнен клеем-герметиком Эласил 137–180 производства ГНИИХТЭОС. И модулятор повторно «прокачивался» в вакууме 20–30 мин для заполнения паза герметиком, его обезвоживания и дальнейшей полимеризации.

Мы надеемся, что сушка иммерсии в вакууме позволит минимизировать влияние влаги, растворенной в ней, на прочность адгезии между кристаллом и токопроводящим покрытием и на сам водорастворимый кристалл. А заполнение паза и торца кристалла герметиком будет препятствовать проникновению влаги извне.

Характеристики ЭОМ

Измерение полуволнового, или модулирующего, напряжения $U_{\lambda/2}$ происходило в длине волны 632.8 нм по стандартной схеме со скрещенными поляризаторами. Значения полуволнового напряжения у модуляторов могут несколько различаться в силу конструктивных особенностей. $U_{\lambda/2}$ у опытного образца нового модулятора составило 3.11 кВ при температуре окружающей среды 19 °С.

При измерении быстродействия получили следующие времена переключений: $0 \rightarrow \lambda/2 - 200$ мкс, $\lambda/2 \rightarrow 0 - 150$ мкс. Спад напряжения со временем, который обычно наблюдается на низких частотах (~1 Гц), у исследуемого образца не обнаружен (рис. 3).

Расширение углового поля ЭОМ

Использование модуляторов на новых светосильных телескопах требует увеличения их линейного и углового поля приема излучения. В телескопе СОЛСИТ (БАО, п. Листвянка) – солнечный синоптичекий телескоп для измерения крупномасштабных магнитных полей – требуется электрооптический модулятор диаметром 70 мм. Технологически мы готовы для решения этой задачи. Также для обеспечения работы крупного солнечного телескопа с зеркалом 3 м КСТ-3 [Демидов и др., 2015], возможно, потребуется модулятор с расширенным угловым полем.

Угловое поле у модуляторов на основе электрооптических кристаллов составляет ±1.5°. Расширение углового поля оптических систем – одна из немаловажных задач. Несколько способов расширения углового поля электрооптического модулятора рассмотрены в работе [West, 1990].

Для наших экспериментов по расширению углового поля был выбран способ с использованием двух модуляторов и системы из двух фазовых пластинок, образующих фазовый «ротатор».

Изначально модуляторы закреплялись на оптической скамье в произвольном положении (рис. 4).

Затем модулятор 1 и модулятор 2 ориентировались под углами ±45°, соответственно, относительно оси входного поляризатора.

После подачи на модуляторы напряжения коноскопическая картина изменялась (рис. 5). А.Г. Цаюкова

Рис. 2. Схематическое изображение электрооптического модулятора в оправе: 1 – электрооптический кристалл; 2 – прозрачное токопроводящее покрытие на кристалле; 3 – контактные кольца; 4 – токопроводящее покрытие на контактных кольцах; 5 – кольцевые прокладки из индия; 6 – оправа модулятора; 7 – оптические окна; 8 – капиллярный слой иммерсии; 9 – слой защитного клея-герметика Эласил 137–180 (производство ГНИИХТЭОС); 10 – клеммы для подключения управляющего сигнала; 11 – паз между контактным кольцом и защитным стеклом.

)дөл)
	Канал 1
↓	Частота
	1.06 ГЦ
	Канал 1
	Период
	947 MC
	Канал 1
<u></u>	Среднее
	2.45 B
	Канал 1
💽 🗄 🗛 🖓 🖓 🖓 🖓 🖓 🖓 🖓 🖓 🖓 🖓 🖓	Размах
	4.72 B
	Канал 1
↓	СКЗ
	2.26 B
К1 1.00 В К2 200 мВ Гор:	250 MC

Рис. 3. Осциллограмма сигнала с ZET 302 модулятора нового типа на частоте переключения 1.06 Гц.

Рис. 4. Коноскопическая картина одного модулятора в произвольном положении без приложенного напряжения (a); двух модуляторов в произвольном положении без приложенного напряжения (δ).

Рис. 5. Коноскопическая картина двух модуляторов в положении $\pm 45^{\circ}$ (относительно оси входного поляризатора) при положительном напряжении 1 кВ (*a*); при отрицательном напряжении 1кВ (*б*).

Электрооптические модуляторы поляризованного излучения

Рис. 6. Коноскопическая картина поле модулятора без напряжения (*a*); при подаче напряжения 1 кB при постоянном токе (δ).

Между модуляторами устанавливалась система из полуволновых фазовых пластинок, образующих «ротатор». Углы пластинок составляли 22.5° и 67.5° относительно оси входного поляризатора.

Экспериментально подтверждено, что система двух модуляторов и двух фазовых пластин, образующих «ротатор» [West, 1990], расширяет угловое поле, более чем в два раза, о чем свидетельствуют коноскопические картины (рис. 6).

Заключение

В работе представлена разработка метода полирования водорастворимого кристалла DKDP и описано технологическое решение, которое должно увеличить срок эксплуатации ЭОМ. Также представлены данные эксперимента по расширению углового поля модулятора. Надеемся, что работа будет полезна при изготовлении электрооптических модуляторов, отличающихся надёжностью и качественно новыми характеристиками.

СПИСОК ЛИТЕРАТУРЫ

Байбородин Ю.В., Гаража С.А. Электрооптический эффект в кристаллах и его применение в приборостроении. М., Машиностроение, 1967. 80 с.

Бережной А.А. Электрооптические модуляторы и затворы // Оптический журнал. 1999. Т. 66, № 7. С. 3–19.

Бородин А.Н., Домышев Г.Н., Кобанов Н.И. и др. Электрооптические фазовые модуляторы для современных солнечных поляриметров // Солнечно-земная физика. 2004. Вып. 6. С. 161–162.

Бородин А.Н., Петров А.С., Домышев Г.Н., Скоморовский В.И. «Электрооптический фазовый модулятор», патент РФ №2248601, G02F 1/03, публикация патента: 20.03.2005 г.

Демидов М.Л., Григорьев В.М. и др. Проект национального российского крупного солнечного телескопа с диаметром зеркала 3 м // Современная геодинамика и опасные природные процессы в Центральной Азии. 2015. Вып. 8. С. 55–67.

Прошин В.А., Скоморовский В.И., Кушталь Г.И, Мамченко М.С., Химич В.А. «Электрооптический модулятор поляризованного излучения», патент № 130094, публикация патента: 10.07.2013 г.

Степанов В.Е., Григорьев В.М., Кобанов Н.И., Осак Б.Ф. Электрооптический анализатор поляризации с кодово-импульсным управлением // Исслед. по геомагнетизму, аэрономии и физике Солнца. 1975. Вып. 37. С. 147–152.

Ярив А., Юх П. Оптические волны в кристаллах: Пер. с англ. М.: Мир, 1987. 616 с.

Beckers J.M. Principles of operation of solar magnetographs // Solar Physics. 1968. V. 5, iss. 1. P. 15–28.

Wang B., Li Y., Gao H. Water-in-Oil Dispersion for KH_2PO_4 (KDP) Cristal CMP // J. Dispersion Scienc. Technol. 2010. V. 31. P. 1611–1617.

West E.A. Large Field-of-View KD*P Modulator // Polarimetry: Radar, Infrared, Visible, Ultraviolet, and X-Ray. 1990. V. 1317. P. 312–323.

Институт солнечно-земной физики СО РАН, Иркутск, Россия