ФАЗОВЫЕ ПЛАСТИНКИ ИЗ ПОЛИМЕРНЫХ МАТЕРИАЛОВ ДЛЯ ПОЛЯРИЗАЦИОННЫХ ИЗМЕРЕНИЙ

Л.С. Лоптева

PHASE PLATES MADE OF POLYMERIC MATERIALS FOR POLARIZATION MEASUREMENTS

L.S. Lopteva

В представленной работе были исследованы свойства поликарбоната, разработана технология обработки (шлифовка связанным абразивом и химико-механическое полирование), определены методы контроля его оптических характеристик и приведены параметры новых полуволновых и четвертьволновых пластинок диаметром 70 мм.

In the present study the properties of polycarbonate were investigated, the technology of processing (grinding bonded abrasives and chemical-mechanical polishing) was worked out, methods to control its optical characteristics were identified and parameters of new half-wave and quarter-wave plates 70 mm in diameter were adduced.

Введение

Фазовые пластинки используются в поляриметрии небесных объектов, в измерении магнитных полей, для исправления инструментальной поляризации телескопов, в интерференционно-поляризационных фильтрах. Широко распространены фазовые пластинки из природных кристаллов слюды и кварца. Однако в современных исследованиях требуется пластинки с максимальными параметрами – расширенное угловое и рабочее поле. Поэтому альтернативой природным кристаллам могут стать полимерные материалы, обладающие искусственно вызванной анизотропией.

Так, к примеру, в Большом солнечном вакуумном телескопе (БСВТ), расположенном в Листвянке, для оценки собственной поляризации телескопа, из-за невозможности изготовить оптическую систему из кристалла диаметром до 800 мм, используются дихроический пленочный поляризатор – 15 поляризаторов уложены в прямоугольную матрицу, полностью перекрывают входную апертуру телескопа диаметром 760 мм, и четвертьволновая фазовая пластинка (рис. 1), собранная из трех полос полипропиленовой пленки шириной 300 мм и толщиной 20 мкм, закрепленная в пяльцах и установленная в кольце [Фирстова, 2010].

Рис. 1. Четвертьволновая пластинка в оправе для БСВТ.

Известны работы по изготовлению фазовых пластинок для измерения магнитных полей из полиметилметакрилата [Samoylov, 2004], полипропилена и полиэтилентерефталата [Домышев, 1987] В работах исследуются свойства используемых материалов. Авторами были получены фазовые и фазовые ахроматические пластики с рабочим полем от 10 до 50 мм. В данных статьях при изготовлении пластинок не применялась оптическая обработка для подгонки их фазового сдвига и толщины: полиметиметакрилат вытягивался до получения определенного фазового сдвига, а пленки разных фирм отбирались по двойному преломлению из рулонного материала.

В представленной работе нами были исследованы свойства напряженного поликарбоната, разработана технология обработки, определены методы контроля его оптических характеристик и приведены параметры новых полуволновых и четвертьволновых пластинок диаметром 70 мм для длины волны 6303 Å. Малая величина двупреломления в поликарбонате позволяет изготавливать пластинки нулевого порядка интерференции с толщиной удобной для оптической обработки; низкая твердость делает поликарбонат легко обрабатываемым, а монолитность и оптическая однотолщинность дает возможность изготавливать пластинки большего размера, чем пластинки из пленок или кварца.

Методика исследования и результаты

Проделанная работа условно разделена на три этапа: исследование и отбор материала, обработка и сборка фазовых пластинок.

Выбор материала осуществлялся по двум основным параметрам: пропускание в диапазоне от ультрафиолетовой до инфракрасной области и однородность двойного преломления по поверхности (использовались компенсаторы Бабине, Солейля и спектрофотометр). Из-за наличия в некоторых образцах поликарбоната добавок для защиты от ультрафиолетового разрушения, рабочий диапазон пропускания этих образцов начинается с области 4000 Å. Параметр оптической неоднородности связан с тем, что поликарбонат получают из гранул методом экструзии. Создаваемое механическое напряжение распределено неравномерно по площади готового листа, мы принимаем, что допустимое отклонение по двойному преломлению для заготовок составляет ±0.1 порядка интерференции.

Определение целого порядка интерференции можно проводить двумя методами: по смещению нулевой полосы на кварцевом клине компенсатора Бабине и по канавчатому спектру, полученному на спектрофотометре, оба способа взаимно дополняют друг друга. Оценку дробной части можно осуществлять на любом из трех компенсаторов (Бабине, Солейля, Сенармон) или по канавчатому спектру с высоким разрешение на спектрографе за счет измерения дополнительной фазы, которая вносит исследуемая пластинка к образцам с высоким порядком интерференции [Демидов, 1982]. Описание и оценка каждого метода исследования будет проведена в следующей работе.

Зависимость фазового сдвига от длины в волны в поликарбонате представлена на рис. 2. Рисунок содержит пять кривых, относящихся к пяти образцам поликарбоната разной толщины (толщины указаны около каждой кривой) и разных производителей. Дисперсия двойного преломления в поликарбонате различна для каждой кривой, что позволяет подбирать материал в зависимости от требуемых параметров.

В табл. 1 представлены значение толщин 5 образцов, их порядок интерференции, толщина на один порядок и разность показателей обыкновенного и необыкновенного лучей для длины волны 6303 Å.

Таблица 1

Оптические характеристики ооразцов поликарооната				
<i>d</i> , mm	N (±0.015)	<i>d/N</i> , mm	no – ne	
2.08	0.427	4.916	0.00013	
2.10	0.468	4.439	0.00014	
3.81	1.779	2.141	0.00029	
4.705	2.020	2.328	0.00027	
4.85	3.642	1.361	0.00047	

Данные показывают, что изготовить пластинку нулевого порядка из поликарбоната технологически проще, так как ее толщина будет составлять несколько миллиметров, чем пластинки из кварца или шпата, толщины которых в первом порядке для длины волны 6303 Å составляют соответственно 69.63 мкм и 3.696 мкм. А малое значение двупреломления, делает менее чувствительным фазовый сдвиг к наклону.

Рис. 2. Дисперсия двойного преломления в образцах поликарбонате от разных производителей.

На рефрактометре по углу полного внутреннего отражения определили показатель преломления поликарбоната *n*=1.5842.

Обработка поликарбоната

Для повышения точности и чистоты разработали технологию оптической обработки поликарбоната. Этапы обработки – шлифовка и полировка, проводились на станке для двусторонней обработки (рис. 3) при постоянной подаче абразивной суспензии – 6 пластинок помещаются в сепаратор между двумя вращающимися шлифовальниками/ полировальниками. Ранее двусторонняя обработка применялась для изготовления плоскопараллельных стеклянных деталей с высокой плоскостностностью поверхности [Домышев, 1976].

Шлифовка осуществлялась связанным абразивом (абразивная бумага карбид кремния фирмы Buehler) в 3 этапа с постепенным уменьшением размера абразивного зерна. Использовали именно связанный абразив, так как увеличивается скорость съема материала и не идет шаржирование (внедрение) абразивного зерна в поликарбонат. Контроль плоскостности, однородность съема и мата на поверхности деталей достигался подбором оптимальных режимов работы станка.

Следующий этап – полировка. Здесь особое внимание уделялось химико-механическому полированию (ХМП). Так как поликарбонат достаточно мягкий материал, то ХМП подходит лучше чем механическое полирование (МП). Главной целью этого этапа было получение деталей с хорошей поверхностью: уменьшение мелких царапин и ласин, сохранение плоскостности, а также наличие волнового фронта не более 5 колец (1.25 мкм).

Рис. 3. Станок для двусторонней оптической обработки: 1 – сепаратор, 2 – окна для деталей, 3 – планшайбы, 4 – подача суспензии.

Таблина 2

Суспензия для ХМП – трехкомпонентная система, содержащая воду, твердую фазу (8–12 % масс) и химические компоненты [Артемов, 2011]. В ходе полирования использовалось два вида абразива – оксид церия и оксид алюминия (отличающиеся по твердости, размеру и форме зерна порошки), химический компонент – это растворитель, который агрессивно действую на поликарбонат, концентрация которого подбиралась экспериментально.

Сборка фазовых пластинок

Полуволновые и четвертьволновые пластинки (λ =6303 Å) были собраны из двух пластинок (общая толщина примерно 10 мм), с использованием иммерсии Dow Corning 705, с показателем преломления 1.587 близким к показателю преломления поликарбоната, которые дают нулевой порядок за счет разворота одноименных осей (одноименные оси определялись на компенсаторе Бабине). Грани пластинки зафиксированы герметиком. Для нахождения одноименный осей, ориентировки и сборки, использовалась система из двух поляризаторов и подвижный столик с лимбом, а непосредственно фазовый сдвиг определялся на компенсаторе Сенармона. Характеристики полученных пластинок представлены в табл. 2.

3-5 колец (0.75 1.25 мкм)	

Заключение

Фазовые пластинки из полимерных материалов, обладая рядом преимуществ перед пластинками из природных кристаллов, постепенно внедряются в оптические системы телескопов для поляризационных измерений. В проделанной нами работе мы обратили свое внимание на поликарбонат – материал, который прозрачен в видимой и инфракрасной области и обладает двойным преломление. Были исследованы его оптические характеристики (дисперсия двойного преломления и показателя преломления, пропускание), предложены технология его обработки (шлифовка связанным абразивом и химикомеханическое полирование на станке с двусторонней обработкой) и методы определения фазового сдвига (на компенсаторах Бабине, Солейля, Сенармона и по канавчатому спектру).

Подобных работ в России, связанных с оптической обработкой поликарбоната и применению этого материала в качестве фазовых пластинок нам не встречалось. Ближайшая перспектива – отработать технологию изготовления фазовых пластинок из поликарбоната с учетом ошибок, а также исследовать другие полимерные материалы, такие как полиэтилентерефталат, полиметилметакрилат для изготовления ахроматических фазовых систем.

СПИСОК ЛИТЕРАТУРЫ

Артемов А.С. Химико-механическое полирование материалов. Российские нанотехнологии. 2011. № 8. С. 54– 73.

Демидов М.Л., Скоморовский В.И. Исследование двупреломляющих полимеров на спектрокомпенсаторе. Ирк: СибИЗМИР. 1982.Вып. 60. С. 71–75.

Домышев Г.Н., Миловидова Н.П., Садохин В.П., Скоморовский В.И. Ахроматические фазовые пластинки из полимерных материалов: Препринт № 6–87 / СибИЗМИР. 20 с.

Домышев Г.Н., Садохин В.П., Скоморовский В.И. Способ изготовления ахроматических систем. Авт.св. № 825539. Бюллетень изобр. 1976. № 45.

Фирстова Н.М., Скоморовский В.И., Поляков В.И., Кушталь Г.И. Исследование инструментальной поляризации большого солнечного вакуумного телескопа. Ирк: ИСЗФ СО РАН. 2010. Вып. 16. С. 26–31.

Samoylov A.V. Achromatic and super-achromatic zeroorder waveplates // Journal of Quantitative Spectroscopy and Radiative Transfer 88. 2004. C. 319–325.

Институт солнечно-земной физики СО РАН, Иркутск, Россия