УДК 551.510.413.5, 550.385.4

ОСОБЕННОСТИ ПОВЕДЕНИЯ ЭЛЕКТРОННОЙ КОНЦЕНТРАЦИИ В F-ОБЛАСТИ И ВНЕШНЕЙ ИОНОСФЕРЕ НА СРЕДНИХ И НИЗКИХ ШИРОТАХ В ПЕРИОД 22–29 СЕНТЯБРЯ 2011 г.

^{1, 2}И.А. Носиков, ²М.В. Клименко, ²В.В. Клименко, ³В. Трухлик

FEATURES OF THE ELECTRON DENSITY BEHAVIOR IN THE F-REGION AND OUTER IONOSPHERE AT MIDDLE AND LOW LATITUDES DURING 22–29 SEPTEMBER 2011

^{1, 2}I.A. Nosikov, ²M.V. Klimenko, ²V.V. Klimenko, ³V. Truhlik

Представлен анализ данных измерений ионосферных параметров ионозондом и радаром некогерентного рассеяния (PHP) в Jicamarca (Перу) в спокойных условиях и во время геомагнитных бурь 22–29 сентября 2011 г. Оценен вклад ионосферы в полное электронное содержание (*TEC*) по данным PHP. Данные наблюдений сравниваются с результатами расчетов по модели ГСМ ТИП. Выделены особенности поведения электронной концентрации N_e в экваториальной ионосфере и, в частности, F3-слоя. Получено согласие результатов модельных расчетов и данных наблюдений в спокойных условиях и во время геомагнитной бури.

The analysis of the ionosonde and incoherent scatter radar (ISR) data of ionospheric parameters at Jicamarca (Peru) in quiet conditions and during geomagnetic storms on 22–29 September 2011. The estimation of the ionosphere contribution to the Total Electron Content (*TEC*) according to ISR. These observations are compared with GSM TIP model calculation results. The features of the behavior of the electron density N_e in the equatorial ionosphere and, in particular, F3 layer, were identified. The consent of the model calculation results with observations was obtained in quiet conditions and during geomagnetic storms.

Введение

Анализ данных измерений ионосферных параметров ионозондом и PHP в Jicamarca (Перу) позволяет описать поведение экваториальной ионосферы во время геомагнитных бурь 22-29 сентября 2011 г. (на рис. 1 показано поведение в этот период индексов геомагнитной активности D_{st} и K_p) и сравнить их с результатами расчетов по модели ГСМ ТИП [Namgaladze et al., 1988]. Ранее с использованием этой модели были проведены расчеты поведения различных ионосферных параметров во время геомагнитных бурь в апреле 2000, октябре 2003 г., ноябре 2003 и 2004 гг., сентябре 2005 г., мае 2010 г. [Klimenko et al., 2011; Sahai et al., 2011; Klimenko, Klimenko, 2012]. В этих же работах можно найти описание постановки задачи моделирования, которой мы воспользовались и в данной работе. Несколько станций на низких и средних широтах были выбраны для проведения сравнения результатов модельных расчетов с данными наблюдений. Это сравнение в целом выявило удовлетворительное согласие результатов расчетов с наблюдательными данными. Из-за ограниченного объема статьи мы приводим такое сравнение только для станции Jicamarca и показываем пример рассчитанного по модели ГСМ ТИП глобального распределения некоторых ионосферных параметров в спокойных условиях и во время бури.

Данные измерений и результаты модельных расчетов

На рис. 2 представлены вертикальные профили N_e в различные моменты времени, полученные по данным РНР в Јісатагса в спокойных условиях и по результатам расчетов по модели ГСМ ТИП как в спокойных условиях (24 сентября), так и в главную (26 сентября) и восстановительную (29 сентября) фазы геомагнитной бури.

Из сравнения двух верхних графиков на рис. 2, *а* видно, что в 00:00 UT данные наблюдений и резуль-

Рис. 1. Поведение индексов геомагнитной активности $D_{\rm st}$ и $K_{\rm p}$ в сентябре 2011 г.

таты расчетов заметно отличаются. Максимум Ne рассчитанного профиля в два раза превышает значение максимума по данным РНР, и он расположен на высоте ~350 км, что на 170 км ниже, чем по данным РНР. Профили для 04:00 UT очень похожи. Модельный профиль для 06:00 UT согласуется с экспериментальным по высоте максимума, но в ~2 раза меньше по значению. Профили для 08:00, 10:00 и 12:00 UT наилучшим образом согласуются по значениям максимума. Высоты максимумов в 08:00 и 12:00 также удовлетворительно согласуются. В 12:00 UT результаты модельных расчетов показывают формирование F3-слоя на высоте ~420 км. Его максимум превышает максимум F2-слоя, высота которого удовлетворительно согласуется с высотой максимума слоя по данным РНР. Отметим также, что по данным РНР, как и по модельным расчетам, в 04:00-08:00 UT и в 12:00 UT формируется F3-слой, максимум которого меньше максимума F2-слоя, а высота его по модели ГСМ ТИП меньше, чем по данным РНР.

На рис. 2, б показаны профили N_e для 08:00– 19:00 LT (местное время для Jicamarca LT=UT-05). Общим для них является то, что максимумы профилей по модели ГСМ ТИП больше максимумов по данным РНР и на всех виден по крайней мере один дополнительный слой – F3-слой.

Одной из отличительных особенностей экваториальной ионосферы является наличие дополнительного F3-слоя. Согласно модельным расчетам F3-слой

Рис. 2. Вертикальные профили N_e над Jicamarca в сентябре 2011 г. с 00:00 UT до 12:00 UT. Вверху – данные измерений РНР в спокойных условиях, ниже – результаты расчетов по модели ГСМ ТИП в спокойных условиях (24.09) и во время бури (29.09) (*a*). То же для 13:00–24:00 UT. Буря 26.09 и 29.09. (*б*).

появляется выше максимума F2-слоя на высотах ≥400 км. В отдельные моменты времени этот слой может стать главным, когда его максимум превысит максимум F2-слоя, что позволит его обнаружить при зондировании снизу. В остальные моменты времени, когда F3-слой существует и foF3<foF2, он не виден при наземном зондировании и его обнаружение становится сложной задачей, поскольку в этом случае его можно увидеть только при зондировании ионосферы со спутников и с помощью PHP, данными измерений которого мы воспользовались в настоящей работе. На

рис. 2, а F3-слой на профилях N_e по данным PHP проявляется в виде излома на высотах ~400–450 км. Такие изломы видны практически на всех профилях PHP, за исключением профиля для 10:00 UT, который является гладким. Все профили PHP на рис. 2, б либо содержат четкий F3-слой (13:46, 18:02, 19:59 UT), либо сильно неоднородные с многочисленными минимумами и максимумами, один из которых, на высотах \geq 410 км, может быть F3-слоем.

Рассмотрим теперь профили, рассчитанные во время геомагнитной бури. К сожалению, для этого

Рис. 3. Суточные вариации h_{max} (вверху) и N_{max} (в центре) над Јісатагса по данным ионозонда и РНР в спокойных условиях в сентябре 2011 г. Внизу – суточные вариации *IEC*, рассчитанного в интервале высот 210–550 км по данным ионозонда и по модели ГСМ ТИП, а также *TEC*, рассчитанного по модели ГСМ ТИП.

периода данные измерений РНР отсутствуют. Сравнивая профили для 24 сентября (спокойный день) и для 26 сентября (активная фаза бури) на рис. 2, б, можно заметить понижения максимума F-области во время бури, т. е. отрицательные ионосферные возмущения. Кроме того, отчетливо видно влияние геомагнитной бури не только на параметры F2-слоя, но и на F3-слой, который становится более четко выраженным и существует более продолжительное время. На фазе восстановления 29 сентября можно отметить понижение максимума F-области в первой половине дня и повышение во второй половине. Что касается F3-слоя, то можно заметить его ослабление по сравнению с 24 и 26 сентября или даже полное исчезновение.

Из рис. 3 видно, что высоты максимума F-области $h_{\rm max}$ по данным PHP и ионозонда довольно хорошо согласуются между собой. При этом значения электронной концентрации в максимуме F-области N_{max} также хорошо согласуются в ночное время, однако дневные значения N_{max} по данным ионозонда, которые можно считать эталонными, в 1.2-2.0 раза больше, чем по данным PHP. Именно этим объясняются различия между ионосферным электронным содержанием (IEC), рассчитанным по данным PHP и по модели ГСМ ТИП (из рис. 4 видно, что в спокойных условиях N_{max}, рассчитанные по модели, хорошо согласуются с данными ионозонда). Таким образом, заниженные значения IEC по данным PHP объясняются неточностью показаний радара в дневное время, что также подтверждают заниженные значения N_e-профилей, показанных на рис. 2, б в дневное время. Следует заметить, что разница между ТЕС, рассчитанным по модели ГСМ ТИП и показанным на этом рисунке, и ІЕС представляет собой плазмосферное электронное содержание (PEC) над Jicamarca.

Сравнение N_{max} и h_{max} по данным ионозонда и результатам модельных расчетов показано на рис. 4. Заметим, что ионозонд дает значения абсолютного максимума F-области. В целом имеется достаточно хорошее согласие, особенно в интервале 12:00– 21:00 UT, но имеются и существенные отличия, главным образом в интервалах 21:00–02:00 и 04:00– 12:00 UT. На первом из этих интервалов данные наблюдений говорят о наличии F3-слоя, который либо отсутствует в модельных расчетах, либо существует, но foF3<foF2. На втором интервале модельные расчеты показывают формирование F3-слоя, тогда как по данным наблюдений он либо отсутствует, либо существует, но foF3<foF2.

На рис. 5 показан пример рассчитанных по модели ГСМ ТИП глобальных карт foF, *IEC*, *TEC* и *PEC* для спокойных геомагнитных условий в период геомагнитной бури в 20:00 UT 26 сентября. Из этих карт видно, где и какие возмущения вызывает геомагнитная буря в это время.

Заключение

Показано, что результаты модельных расчетов согласуются с данными наблюдений РНР и ионозонда как в спокойных условиях, так и во время геомагнитной бури. Профили N_e по данным РНР выявляют существование F3-слоя, формирование которого показывают и модельные расчеты. Показано, что РНР в дневное время дает заниженные значения N_{max} . Проведены модельные расчеты *TEC* и *IEC* над Jicamarca, что позволило оценить вклад протоносферы в *TEC*.

Авторы выражают искреннюю благодарность В. Zhao, К.Г. Ратовскому и А.Е. Степанову за предоставленные экспериментальные данные и за длительное плодотворное сотрудничество.

Рис. 4. Суточные вариации *N*_{max} (вверху) и *h*_{max} (внизу) по данным ионозонда и по модели ГСМ ТИП с выделением максимумов F2- и F3-слоев и абсолютного максимума F-слоя в спокойных условиях и во время бури.

Puc. 5.

Рис. 5. Рассчитанные по модели ГСМ ТИП глобальные долготно-широтные распределения критической частоты F-слоя foF, *IEC*, *TEC* и *PEC* для спокойных условий сентября 2011 г. (слева) и возмущения этих параметров в 20:00 UT 26 сентября 2011 г. (справа).

Работа выполнена при финансовой поддержке РФФИ, грант №12-05-31217, и Программы № 22 РАН.

СПИСОК ЛИТЕРАТУРЫ

Klimenko M.V., Klimenko V.V. Disturbance dynamo, prompt penetration electric field and overshielding in the Earth's ionosphere during geomagnetic storm // J. Atmos. Solar-Terr. Phys. 2012. V. 90–91. P. 146–155. doi:10.1016/ j.jastp.2012.02.018.

Klimenko M.V., Klimenko V.V., Ratovsky K.G., et al. Numerical modeling of ionospheric effects in the middle- and low-latitude F region during geomagnetic storm sequence of 9–14 September 2005 // Radio Sci. 2011. V. 46. RS0D03. doi:10.1029/2010RS004590. Namgaladze A.A., Korenkov Yu.N., Klimenko V.V., et al. Global model of the thermosphere-ionosphere-protonosphere system // PAGEOPH. 1988. V. 127. P. 219–254.

Sahai Y., de Abreu A.J., Fagundes P.R., et al. Effects of geomagnetic super storms on the ionospheric F-region in the South American sector using a GPS technique: A review // Asian J. Phys. 2011. V. 20, N 4. P. 1–20.

¹Балтийский Федеральный университет им. И. Канта, Калинин-град, Россия

²Западное отделение Института земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова, Калининград, Россия

³Институт физики атмосферы, Прага, Чешская Республика