УДК 550.388.2

МОДЕЛИРОВАНИЕ ПАРАМЕТРОВ ДИНАМИЧЕСКИХ И ТЕПЛОВЫХ ПРОЦЕССОВ В ГЕОКОСМИЧЕСКОЙ ПЛАЗМЕ ПО ДАННЫМ РАДАРА НЕКОГЕРЕНТНОГО РАССЕЯНИЯ В ХАРЬКОВЕ

М.В. Ляшенко

MODELLING OF DYNAMIC AND THERMAL PROCESSES PARAMETERS IN GEOSPACE PLASMA ACCORDING TO INCOHERENT SCATTER RADAR IN KHARKOV

M.V. Lyashenko

Представлены результаты моделирования сезонно-суточных вариаций параметров динамических и тепловых процессов на фазе роста 24-го цикла солнечной активности.

Modeling results of season and diurnal variations of dynamic and thermal processes parameters during rising phase of 24th solar activity cycle are presented.

Введение

В настоящее время одной из важных проблем исследования геокосмоса является создание новых физических теорий и моделей среды, которые достоверно отражают поведение параметров геокосмической плазмы в разных гелиогеофизических условиях. Такие модели позволяют прогнозировать параметры геокосмоса в зависимости от состояния космической погоды и, в частности, от уровня солнечной активности (СА). Для создания наиболее целостной картины всего комплекса явлений, которые происходят в околоземной среде, требуется адекватное описание динамических и тепловых процессов.

Наиболее информативным наземным радиофизическим методом исследования вариаций параметров ионосферной плазмы является метод некогерентного рассеяния (НР). Харьковский радар НР является единственным в среднеширотной Европе инструментом, с помощью которого можно получать информацию об основных параметрах ионосферы и ее динамики [Таран, 2001].

Целью работы является представление результатов моделирования параметров физических процессов в ионосфере в спокойных условиях на фазе роста 24-го цикла СА.

Результаты моделирования и обсуждение

На рис. 1–7 представлены результаты моделирования высотно-временных вариаций параметров тепловых и динамических процессов в ионосфере, а также параметров плазмы, не измеряемых непосредственно в эксперименте на радаре НР. Моделирование выполнено для периодов, близких к весеннему и осеннему равноденствиям, летнему и зимнему солнцестояниям в 2009 г.

Теоретические соотношения, используемые для расчета параметров физических процессов в ионосфере, такие же, как в [Ляшенко и др., 2006; Дзюбанов и др., 2008]. В качестве исходных используются параметры ионосферы N, T_e, T_i и V_z , полученные на харьковском радаре НР. Расчет параметров нейтральной атмосферы выполнен по модели NRLMSISE-00 [Picone et al., 2002].

Рассмотрим высотные профили частот соударений электронов с ионами. Как видно из рис. 1, для всех сезонов максимум в высотном профиле v_{ei} в ночные часы располагается в диапазоне высот 250–270 км. Причем ночные значения v_{ei} превышают дневные практически во всем рассматриваемом диапазоне высот. Как известно, v_{ei} зависит от температуры электронов T_e и имеет сложную зависимость от концентрации частиц N. Как показал детальный анализ, основной вклад в суточные изменения v_{ei} вносят вариации N.

Расчеты показали (рис. 2), что частота соударений ионов с нейтралами v_{in} в дневные часы во всем рассматриваемом диапазоне высот превышает значения v_{in} в ночных условиях. Это связано с тем, что суммарная частота соударений ионов с нейтральными частицами прямо пропорциональна температуре нейтралов T_n и температуре ионов T_i , причем в ночных условиях $T_n \approx T_i$. Дневные и ночные значения T_n различаются не более чем на 15 %, тогда как T_i ото дня к ночи испытывает заметные вариации. Максимальные значения температуры ионов в дневные часы примерно в 2 раза больше минимальных значений T_i в ночных условиях. Таким образом, основную роль в поведении v_{in} в течение суток играют вариации температуры ионов.

Рассмотрим высотные профили продольной составляющей тензора амбиполярной диффузии $D_{\rm a}$. Как видно из рис. 3, в интервале высот 200–400 км ночные и дневные значения $D_{\rm a}$ практически совпадают. На высотах z>500 км дневные значения $D_{\rm a}$ превышают ночные.

Рис. 1. Высотные профили частот соударений электронов с ионами v_{ei.}

Рис. 2. Высотные профили частот соударений ионов с нейтралами v_{in.}

Рис. 3. Высотные профили коэффициента амбиполярной диффузии *D*_a.

Коэффициент амбиполярной диффузии пропорционален плазменной температуре $T_p=T_e+T_i$ и обратно пропорционален частоте соударений v_{in} . В дневные и ночные часы существенные отличия в величинах v_{in} для нашего случая имеют место в диапазоне высот 200–300 км. С ростом высоты высотные профили v_{in} практически совпадают. Плазменная температура с ростом высоты увеличивается. Таким образом, можно допустить, что до высоты примерно 400 км вариации D_a определяются как вариациями частоты соударений ионов с нейтралами, так и вариациями температуры плазмы. На высотах z>400 км основную роль в высотном распределении D_a , в большей степени, играют температуры ионов и электронов.

Рассмотрим высотные зависимости продольной составляющей тензора теплопроводности электронного газа κ_e (рис. 4). Как известно, при наличии разности температур в среде от слоя с более высокой температурой к слою с более низкой температурой устанавливается тепловой поток. Скорость изменения этого потока определяется коэффициентом теплопроводности κ_e . Как видно из рис. 4, высотные профили κ_e в дневные и ночные часы существенно различаются. С ростом высоты, как дневные, так и ночные значения κ_e определяются вариациями температуры электронов и частоты соударений электронов с ионами.

На рис. 5 представлены результаты расчета скорости переноса плазмы за счет амбиполярной диф-

Рис. 4. Высотные профили продольной составляющей тензора теплопроводности электронного газа к_{е.}

Рис. 5. Высотные профили скорости переноса заряженных частиц за счет амбиполярной диффузии.

фузии. Видно, что для всех сезонов в ночных условиях имеет место перенос заряженных частиц за счет диффузии с больших на меньшие высоты. В околополуденные часы для периодов равноденствий и зимой в диапазоне высот 200-400 км имеет место перенос плазмы, направленный вверх. Высота перехода от восходящего потока плазмы к нисходящему для равноденствий и зимнего солнцестояния составляет примерно 400 км. Для летнего солнцестояния наблюдается обратная ситуация. В рассматриваемом высотном диапазоне значения скорости переноса $V_d < 0$, что соответствует сбросу ионосферной плазмы вниз, на меньшие высоты. Также следует отметить, что начиная с высоты 400 км доминирующую роль в формировании высотного распределения N играет диффузия.

Далее рассмотрим вариации параметров тепловых процессов в геокосмической плазме. На рис. 6, 7 представлены высотные профили величины энергии, подводимой к электронам Q/N, и плотности потока тепла $\Pi_{\rm T}$, переносимого электронами из плазмосферы в ионосферу соответственно.

Высотно-временные вариации Q/N сложным образом зависят от концентрации частиц и температуры электронов и ионов. Как видно из рис. 6, наибольшие значения величина Q/N имеет на высотах 250–260 км. С ростом высоты величина энергии, подводимой к электронам, уменьшается. Расчеты показали, что величина Q/N подвержена сезонным вариациям. Так, в периоды равноденствий Q/N больше, чем в периоды солнцестояний, а в зимний период Q/N больше, чем в период летнего солнцестояния.

Рис. 6. Высотные профили величины энергии, подводимой к электронам.

Рис. 7. Высотные профили плотности потока тепла, переносимого электронами из плазмосферы в ионосферу.

Сезонные различия, наблюдаемые в вариациях Q/N, можно объяснить эффектами полугодовой и сезонной аномалий. Поведение Q/N, по-видимому, в большей степени определяется вариациями N и N(O), а в сезонных вариациях N и N(O), в свою очередь, хорошо заметны эффекты полугодовой и сезонной аномалий. В пользу такого предположения может быть тот факт, что сезонные различия в Q/N с ростом высоты нивелируются.

На рис. 7 представлены высотные профили плотности потока тепла, переносимого электронами из плазмосферы в ионосферу. Как видно из рисунка, форма высотных профилей $\Pi_{\rm T}$ в периоды равноденствий и солнцестояний различна. Наибольший по модулю поток тепла в летний и зимний период имеет место на высоте примерно 350 км. Для равноденственных периодов максимальные значения $|\Pi_{\rm T}|$ наблюдаются на меньших высотах (примерно 300 км).

Выводы

1. Выполнено моделирование параметров динамических и тепловых процессов в геокосмической плазме в периоды, близкие весеннему и осеннему равноденствиям, летнему и зимнему солнцестояниям на фазе роста 24-го цикла солнечной активности.

 Выявлены суточные и сезонные вариации в поведении параметров физических процессов в геокосмической плазме для рассмотренных периодов.

3. Полученные результаты используются для развития региональной модели ионосферы (CERIM IION) по данным харьковского радара HP над Центральной Европой.

СПИСОК ЛИТЕРАТУРЫ

Дзюбанов Д.А., Ляшенко М.В., Черногор Л.Ф. Исследование и моделирование вариаций параметров ионосферной плазмы в период минимума 23-го цикла солнечной активности // Космічна наука і технологія. 2008. Т. 14, № 1. С. 44–56.

Ляшенко М.В., Черногор Л.Ф., Черняк Ю.В. Суточные и сезонные вариации параметров ионосферной плазмы в период максимума солнечной активности // Космічна наука і технологія. 2006. Т. 12, № 4. С. 56–70.

Таран В.И. Исследования ионосферы в естественном и искусственно возмущенном состояниях методом некогерентного рассеяния // Геомагнетизм и аэрономия. 2001. Т. 41, № 5. С. 659–666.

Picone J.M., Hedin A.E., Drob D.P., Aikin A.C. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues // J. Geophys. Res. 2002. V. 107, N. A12. P. SIA 15 1–16.

Институт ионосферы НАН и МОН Украины, Харьков