УДК 550.388.2

ЭФФЕКТЫ СОЛНЕЧНОГО ТЕРМИНАТОРА ВО ФЛУКТУАЦИЯХ ГЕОМАГНИТНОГО ПОЛЯ

Л.Ф. Черногор, М.А. Шамота

SOLAR TERMINATOR EFFECT ON THE GEOMAGNETIC FIELD FLUCTUATIONS

L.F. Chernogor, M.A. Shamota

Проведен статистический анализ квазипериодических возмущений, вызванных движением солнечного терминатора, и оценены их основные параметры. Установлено, что утренний солнечный терминатор сопровождали возмущения с запаздываниями $\Delta t_1 \approx 30$ —40 мин и $\Delta t_2 \approx 80$ —87 мин. Они представляли собой цуги продолжительностью 45 – 50 мин и периодами 9 – 11 мин. Для вечернего терминатора запаздывания составляли $\Delta t \approx 60$ —80 мин, периоды – около 9–11 мин и продолжительности – 50—60 мин. Проведена аналогичная обработка для контрольных интервалов времени, которая подтвердила, что возмущения, связанные с прохождением терминатора, при этом отсутствовали.

We performed statistical analysis of quasi-periodic perturbations produced by the solar terminator passage, and evaluated their main features. The dawn terminators are determined to be associated with perturbations showing delays of $\Delta t_1 \approx 30-40$ min and of $\Delta t_2 \approx 80-87$ min. The perturbations are the wave trains with 45–50-min duration and of 9–11-min period. The dusk terminators are determined to be associated with perturbations showing delays of $\Delta t \approx 60-80$ min, periods equal to approximately 9–11 min, and durations of 50–60 min. We carried out the same analysis for the reference data obtained during quiet periods; it confirmed that the perturbations are associated with the terminators.

Ввеление

Солнечный терминатор (СТ) относится к систематически действующим источникам генерации возмущений во всех подсистемах системы Земля—атмосфера—ионосфера—магнитосфера [5, 6]. В настоящее время существует ряд теоретических моделей, которые позволяют с определенной точностью описать структуру и параметры СТ как источника высокоэнергетического воздействия на среду, а также установить основные пространственно-временные параметры генерируемых им возмущений [2, 3].

Переходные процессы, вызываемые движением СТ, приводят к генерации перемещающихся волновых возмущений, турбулентных образований, неоднородностей электронной концентрации, устойчивых структур нейтрального компонента, вариаций электрического и магнитного полей, возникновению и усилению неустойчивостей вблизи области воздействия [3].

Эффект генерации солнечным терминатором возмущений в атмосфере и ионосфере не вызывает сомнений и обнаружен экспериментально радиофизическими методами [1, 2]. Что же касается генерации возмущений геомагнитного поля, насколько нам известно, их исследования не проводились.

Целью настоящей работы является изучение и анализ возмущений, генерируемых прохождением солнечного терминатора в утренние и вечерние часы, по результатам наблюдений флуктуаций геомагнитного поля в диапазоне периодов 1–1000 с вблизи г. Харькова.

Средства наблюдения и методика обработки

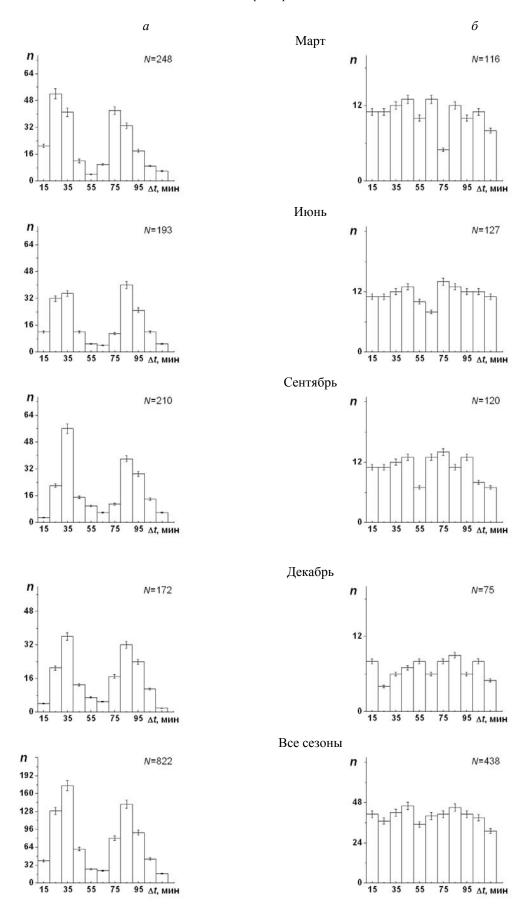
Магнитометр-флюксметр. Несерийный высокочувствительный магнитометр, включенный в состав программно-аппаратного комплекса, размещен в обсерватории Харьковского национального университета им. В.Н. Каразина (с. Граково, Чугуевский район, Харьковская обл.). Его геофизические координаты: 49°40′ N, 36°50′ Е, геомагнитные координаты: +45°20′ геомагнитной широты, 119°20′ Е.

Магнитометр-флюксметр измеряет уровень флуктуаций. Его чувствительность составляет 0.5–500 пТл

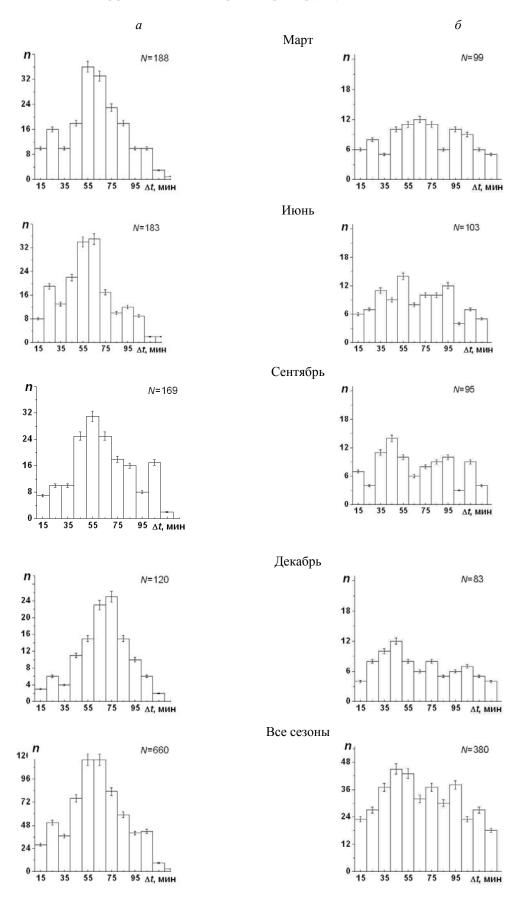
в диапазоне периодов 1-1000 с соответственно.

Для исследований возмущений, вызванных СТ, целесообразно выбирать четыре характерных геофизических временных периода: близ зимнего и летнего солнцестояний, весеннего и осеннего равноденствий. Как утверждается в [3], в эти периоды скорости распространения возмущений параметров ионосферы максимальны, а влияние диффузии минимально. Именно в эти периоды эффекты в ионосфере наблюдались наиболее четко [2].

Определению подлежали времена запаздывания возможной реакции геомагнитного поля на прохождение СТ, ее продолжительность и спектральный состав возникающих возмущений. В качестве гипотезы примем, что геомагнитные пульсации эффективно генерируются волновыми возмущениями (ВВ), возникающими в атмосфере и ионосфере под действием СТ в диапазоне высот 100–180 км. Их механизм связан с модуляцией этими волновыми возмущениями токовой струи. Исходя из этого, для утреннего СТ в качестве высоты отсчета выбиралась высота восхода Солнца на уровне 200 км, для вечернего — заход Солнца на уровне поверхности Земли.


Далее путем усреднения вычислялись статистические характеристики и средние значения параметров возникающих волновых возмущений.

Периоды квазипериодических процессов определялись при помощи вейвлет-анализа на основе вейвлета Морле.


Результаты статистического анализа

Статистическому анализу подлежали основные параметры возможной реакции геомагнитного поля (времена запаздываний, продолжительности и периоды) на прохождение солнечного терминатора относительно высоты 200 км для утреннего СТ и на уровне поверхности Земли для вечернего СТ.

Гистограммы времен запаздывания реакции геомагнитного поля на утренний и вечерний СТ приведены на рис. 1, *а* и рис. 2, *а* соответственно. Из рисунков видно, что утреннему СТ сопутствовали возмущения с запаздываниями 30–40 и 80–87 мин относительно момента восхода Солнца на высоте 200 км.

 $Puc.\ 1.\ \Gamma$ истограммы времен запаздывания (Δt) BB по отношению к моменту времени прохождения утреннего CT на высоте 200 км (a) и для контрольных интервалов времени (δ) .

 $Puc.\ 2.$ То же, что и на рис. 1, по отношению к моменту времени прохождения вечернего CT на уровне поверхности 3емли.

Для вечернего СТ наблюдались волновые возмущения с запаздываниями 60–80 мин относительно момента захода Солнца на уровне поверхности Земли.

Для сравнения на рис. 1 и 2 (панели б) приведены аналогичные гистограммы для контрольных интервалов времени. Выделение подобных эффектов проводилось относительно полудня и полуночи (по местному времени) соответствующих суток. Обработка выполнена для 2002–2008 гг. Число выборок показано на соответствующих гистограммах.

Анализируя рисунки, можно сделать вывод, что экспериментальное распределение величин времен запаздываний появления ВВ в переходные часы существенно отличается от аналогичного распределения для контрольных интервалов времени.

Для количественной характеристики этих отличий применялся критерий Пирсона χ^2 , имеющий следующий вид (см., например, [4]):

$$\chi^{2} = N_{n} \sum_{i=0}^{m} \frac{(\mu_{i} - p_{i})^{2}}{p_{i}},$$

где μ_i и p_i — частоты попадания значения запаздывания в i-й интервал, m — количество рассматриваемых интервалов, N_n — общее число событий проверяемого закона.

Расчеты показали, что для всех сезонов значения χ^2 были достаточно большими, чтоб с необходимой степенью вероятности (95 %) утверждать, что имеет место существенное отличие экспериментальных распределений для утренне-вечерних часов и фоновых интервалов времени (табл. 1).

Таблица

Результаты расчетов критерия χ^2 : для гипотезы 1: законы распределения времен запаздывания в возмущенные и фоновые интервалы времени идентичны (в качестве эталонного выбирался закон для фоновых дней); для гипотезы 2: в фоновые интервалы времени имеет место равномерное распределение.

The second secon								
Гипотеза 1			Гипотеза 2					
Сезон	N	χ^2 эксп	Сезон	N	χ^2 эксп			
Утренний СТ ($\chi_{0.95}^2 = 9.5, \chi_{0.99}^2 = 13.3$)								
Декабрь	78	66.1	Декабрь	31	1.4			
Март	160	42.6	Март	61	0.6			
Июнь	100	44.9	Июнь	57	2.0			
Сентябрь	128	62.2	Сентябрь	58	2.7			
Bce	465	230.8	Bce	208	3.1			
сезоны	105	230.0	сезоны	200	3.1			
Вечерний СТ ($\chi_{0.95}^2 = 18.3$, $\chi_{0.99}^2 = 23.9$)								
Декабрь	124	83.8	Декабрь	83	16.2			
Март	161	73.6	Март	99	17.9			
Июнь	202	189.3	Июнь	103	19.9			
Сентябрь	181	117.7	Сентябрь	95	20.5			
Bce	668	311.0	Bce	380	35.0			
сезоны	000	211.0	сезоны	230	22.0			

Для подтверждения предположения о справедливости закона равномерного распределения в фоновые часы проверялась гипотеза о соответствии экспериментального распределения в контрольные интервалы времени равномерному распределению. Как видно из табл. 1, значения χ^2 попадают в интервал $\chi^2 < \chi^2_{0.95}$. Следовательно, гипотеза о равномерном распределе-

нии в фоновые интервалы времени для утреннего и вечернего СТ во все сезоны принимается.

Результаты статистической обработки массивов значений запаздываний, продолжительностей и периодов колебаний для различных сезонов, а также оценка среднеквадратичных отклонений параметров возмущений приведены в табл. 2. Из таблицы видно, что средние продолжительности эффектов составляли 45–52 мин для утреннего СТ и 50–58 мин для вечернего СТ. Периоды возмущений равнялись 9–11 мин.

Таблица 2 Статистические характеристики основных параметров возмущений, сопутствовавших СТ

Сезон	Запаздыв	зания, мин	Продолжи- тельности, мин	Периоды, мин			
Утренний СТ							
Март	32.0±2.6	83.6±2.1	45.0±3.9	10.3±0.6			
Июнь	32.5±1.7	87.5±1.4	46.0±2.1	10.2±0.2			
Сентябрь	38.6±3.3	87.1±1.8	49.5±2.4	10.9±0.3			
Декабрь	36.9±1.8	87.0±1.8	52.5±2.5	12.2±0.7			
Все сезоны	34.8±9.5	85.1±3.5	47.7±8.1	10.6±1.0			
Вечерний СТ							
Март	62.:	5±1.6	58.1±2.3	9.0±0.7			
Июнь	59.0	6±1.7	49.0±2.2	10.0±0.2			
Сентябрь	63.0	0±1.3	61.0±2.6	10.6±0.4			
Декабрь	68.4	4±1.4	54.0±2.1	10.2±0.3			
Все сезоны	62.4	4±5.8	53.6±4.6	10.0±0.9			

Обсуждение

В 60–80 % случаев прохождения солнечного терминатора имели место заметные или значительные изменения спектрального состава ВВ геомагнитного поля. В большинстве случаев наблюдалось увеличение амплитуды, но в ряде случаев (около 7–10 %) отмечалось подавление сигнала, свидетельствующее, вероятнее всего, о противофазном сложении волновых процессов. Почти всегда вариации характера сигнала сопровождались изменением периодов квазипериодических процессов.

Из статистического анализа следует, что восходу Солнца на высоте $z\approx200$ км систематически сопутствовали возмущения с запаздываниями $\Delta t_1 \approx 30$ -40 мин и $\Delta t_2 \approx 80-87$ мин. Они представляли собой цуги колебаний длительностью 45-50 мин с периодами 9-11 мин. Запаздываниям 30-40 мин соответствуют высоты прохождения СТ 100-150 км. Как известно, на этих высотах находится максимум токовой струи. Возмущения с Δt_1 возникают раньше, чем возмущения с запаздыванием Δt_2 , на величину $\Delta t_{21} = \Delta t_2 - \Delta t_1 \approx 47 - 50$ мин. Появление возмущения с двумя группами запаздываний можно объяснить тем, что СТ генерирует квазипериодический процесс с периодом Т=10-15 мин, промодулированный периодическим процессом с $T_1 = \Delta t_{21}$. Период BB около 47-50 мин характерен для атмосферы Земли.

Он близок к периоду внутренних гравитационных волн, свойственных нейтральной атмосфере.

Добавим, что возмущения наблюдались примерно в 65–80 % случаев, в остальных случаях принятие решения о наличии возмущения, связанного с прохождением утреннего СТ, было затруднено.

Для вечернего СТ были характерны ВВ с запаздыванием $\Delta t \approx 60-80$ мин относительно момента захода Солнца на уровне поверхности Земли. Возмущения наблюдались в 60-70 % случаев. Они представляли собой квазипериодические процессы с преобладающими периодами 9-11 мин и длительностями 50-60 мин. Найденному значению Δt соответствует высота прохождения СТ равная 100-120 км. Как уже отмечалось, на этих высотах находится максимум токовой струи и, следовательно, область эффективной генерации геомагнитных пульсаций.

Амплитуды возмущений как в утреннее, так и в вечернее время составляли 3–5 нТл [8, 9]. Механизм генерации ВВ в геомагнитном поле принимается следующим: внутренние гравитационные волны модулируют параметры нейтрального и ионизированного компонента, а также приводят к возникновению стороннего тока в динамо-области ионосферы, что имеет отклик в геомагнитном поле из-за изменения проводимости среды [7].

Выводы

1. Статистический анализ показал, что восходу Солнца на высоте 200 км систематически сопутствовали возмущения с запаздываниями $\Delta t_1 \approx 30-40$ мин и $\Delta t_2 \approx 80-87$ мин. Они представляли собой цуги колебаний длительностью 45–50 мин с периодами 9–11 мин.

Для вечернего СТ были характерны ВВ с запаздыванием относительно захода Солнца на уровне поверхности Земли $\Delta t \approx$ 60–80 мин, преобладающими периодами 9–11 мин и длительностями 50–60 мин.

- 2. Наблюдаемым запаздываниям соответствуют высоты прохождения солнечного терминатора 100–150 км, где располагается максимум токовой струи, а значит, и область эффективной генерации геомагнитных пульсаций.
- 3. Проведенная аналогичная обработка для контрольных интервалов показала, что с вероятностью 95 % экспериментальное распределение времен запаздываний в контрольные интервалы соответствует закону равномерного распределения, т. е. отсутствует какая-либо закономерность во временах запаздывания ВВ в контрольные интервалы времени.
- 4. Установлено, что для всех сезонов значения χ^2 были достаточно большими, чтоб с необходимой степенью вероятности (95 %) утверждать, что имеет

место существенное отличие экспериментальных распределений для утренне-вечерних часов и фоновых интервалов времени.

- 5. Предложен механизм генерации геомагнитных пульсаций. Он заключается в следующем: внутренние гравитационные волны модулируют параметры нейтрального и ионизированного компонента, а также приводят к возникновению стороннего тока в динамо-области ионосферы, что имеет отклик в геомагнитном поле из-за изменения проводимости среды.
- 6. Результаты теоретических оценок в целом соответствуют результатам наблюдений. Амплитуды ВВ, определенные из данных наблюдений и расчетов, составляли несколько единиц нанотесла.

СПИСОК ЛИТЕРАТУРЫ

- 1. Бурмака В.П., Таран В.И., Черногор Л.Ф. Волновые процессы в ионосфере в спокойных и возмущенных условиях. 2. Анализ результатов наблюдений и моделирование // Геомагнетизм и аэрономия. 2006. Т. 46, № 2. С. 209–218.
- 2. Сомсиков В.М., Троицкий Б.В. Генерация возмущений в атмосфере при прохождении через нее солнечного терминатора // Геомагнетизм и аэрономия. 1975. Т. 15, № 5. С. 856–860.
- 3. Сомсиков В.М. Солнечный терминатор и динамика атмосферы. Алма-Ата: Наука, 1983. 192 с.
- Худсон Д. Статистика для физиков. М.: Мир, 1970.
 297 с.
- 5. Черногор Л.Ф. Земля–атмосфера–ионосферамагнитосфера как открытая динамическая нелинейная физическая система. Ч. 1 // Нелинейный мир. 2006. Т. 4, № 12. С. 655–697.
- 6. Черногор Л.Ф. Земля–атмосфера–ионосфера–магнитосфера как открытая динамическая нелинейная физическая система. Ч.. 2 // Нелинейный мир. 2007. Т. 5, № 4. С. 55–97.
- 7. Черногор Л.Ф. Флуктуации геомагнитного поля вблизи г. Харькова, сопровождавшие старты ракет с космодрома Байконур // Геомагнетизм и аэрономия. 2009. Т. 49, № 3. С. 403–415.
- 8. Черногор Л.Ф., Шамота М.А. Геомагнитные пульсации вблизи г. Харькова, сопутствовавшие прохождению солнечного терминатора. Ч. 1. Результаты спектрального анализа // Космічна наука і технологія. 2009. (В печати).
- 9. Черногор Л.Ф., Шамота М.А. Геомагнитные пульсации вблизи г. Харькова, сопутствовавшие прохождению солнечного терминатора. Ч. 2. Результаты статистического анализа // Космічна наука і технологія. 2009. (В печати).

Харьковский национальный университет им. В.Н. Каразина МОН Украины, Харьков