УДК 551.51

ЭВОЛЮЦИЯ ТЕМПЕРАТУРНОГО РЕЖИМА И СОСТАВА СРЕДНЕЙ И ВЕРХНЕЙ АТМОСФЕРЫ ЗА ПОСЛЕДНИЕ 50 ЛЕТ

А.И. Семенов

EVOLUTION OF THE TEMPERATURE REGIME AND COMPOSITION OF THE MIDDLE AND UPPER ATMOSPHERE FOR THE LAST 50 YEARS

A.I. Semenov

В последние годы в связи с проблемой глобального изменения климата Земли особое внимание ученых привлекает исследование состояния средних и верхних слоев атмосферы. Это обусловлено, с одной стороны, реальной возможностью катастрофических последствий антропогенного изменения химического состава атмосферы, примером чего является истощение озонового слоя [1, 2]. С другой стороны, согласно теоретическим исследованиям (например [3, 4]), глобальные изменения термического и динамического режимов в верхних слоях атмосферы вследствие увеличивающегося притока парниковых газов проявляются сильнее, чем в приземном слое.

Область атмосферы на высотах 30–110 км является местом активных преобразований энергии поглощенного ультрафиолетового излучения Солнца. Вследствие этого в ней происходят многочисленные пространственно-временные изменения структурных и динамических характеристик. Режим средней атмосферы во многом определяет состояние вышележащих слоев, что, в конечном счете, сказывается и на возможностях их использования в практической деятельности человечества.

В работе представлены результаты анализа многолетних изменений температурного режима и состава атмосферы на различных высотных уровнях средней и верхней атмосферы для различных сезонов года и при различных уровнях солнечной активности в течение практически всего ХХ в. Анализ проводился на основе данных спектрофотометрических, ракетных и радиофизических измерений с привлечением опубликованных результатов спутниковых и лидарных измерений.

Методы измерений

Ракетные измерения. Регулярные отечественные измерения температурного режима средней атмосферы на низких, средних и высоких широтах проводились Центральной аэрологической обсерваторией (Росгидромет) в период 1964–1994 гг. на станциях Тумба (8.5° N), Волгоград (48.7° N) и о. Хейса (80.6° N) [5]. Погрешность измерения температуры атмосферы на высотах 25–75 км составляла от 3 до 6 К соответственно.

Измерение эмиссий верхней атмосферы. Измерения характеристик (интенсивность, температура) излучения гидроксила (~87 км), атомарного кислорода (~97 км) и натрия (~92 км) производились с помощью оптической спектрофотометрии. Отечественные результаты преимущественно представлены на основе данных многолетних наблюдений, проводившихся на станциях Звенигород (55.7° N), Абастумани (41.8° N) и Якутск (62.0° N). Из зарубежных использовались данные наблюдений на станциях Делавар (42.8° N), Квебек (46.9° N), Майнут (53.2° N), Вупперталь (51° N), Фритц Пик (39.9° N) и Форт Коллинз (40.6° N). Необходимо отметить, что продолжительность отечественных рядов измерений (1957-2006 гг.) значительно превосходит продолжительность зарубежных (1980-2006 гг.). Погрешность определения абсолютных значений интенсивностей измеряемых эмиссий составляла около 5 %. Погрешность определения температуры по приведенным эмиссиям на различных станциях находилась в пределах 1-3 К [6].

Радиофизические измерения. Для оценки температуры на высотах нижней термосферы (~105–110 км) использовались результаты вертикального зондирования (ВЗ) ионосферы – критические частоты f_0 полуденного слоя Е [7]. Погрешность в определении среднемесячных значений температуры не превышает 7 К. Для анализа привлекались результаты измерений на трех станциях: Слау (52.5° N) за 1958–1987 гг., Юлиусру (55.6° N) и Москва (55.5° N) за 1958–1994 гг.

Среднегодовые многолетние тренды

На рис. 1 показано поведение среднегодовых значений температуры атмосферы в десятикилометровых слоях, центрированных относительно высот 30, 40, 50, 60, 70 км, по данным высокоширотной (о. Хейса), среднеширотной (Волгоград) и тропической (Тумба) станций [5, 8]. Хорошо видно, что с течением времени за исследуемый период средние годовые температуры уменьшаются во всех высотных слоях. Наиболее заметен отрицательный тренд в мезосфере, но и в стратосфере уменьшение температуры не менее -1 К за десятилетие. Аналогичный анализ температурных трендов по данным американских ракетных измерений выполнен в работе [9]. Результаты этой работы согласуются с выводами отечественных ракетных измерений по всем широтам до высот 40 км. Значения трендов для высот выше 40 км у американцев отсутствуют из-за неопределенностей коррекций, которые приходилось вводить для сопоставления получаемых в разные годы температур [10].

На этом же рисунке представлены температурные данные, полученные на ст. Абастумани (1957– 1972 гг.) и ст. Звенигород (1957–2006 гг.) по излучению гидроксила. Наблюдаемые вариации температуры относятся к слою свечения ОН с полушириной ~8.5 км, центрированному около 87 км [11]. Представленные данные впервые позволили обнаружить появление (начиная с конца 1980-х гг.) заметного ослабления отрицательной тенденции изменения температуры в области мезопаузы. Таким образом, вариации тренда температуры в течение рассматриваемого периода наблюдений распадаются как бы на две части: 1955–1985 гг. – линейное уменьшение

Рис. 1. Многолетнее поведение среднегодовых значений температуры средней атмосферы на различных высотах: от 30 до 70 км – данные ракетных измерений для низких широт (треугольники), для средних широт (точки) и для высоких (кружки) [5]; 87 км – данные по излучению гидроксила для Звенигорода (точки), Абастумани (кружки) [8, 15], Вупперталь (треугольники) [6]; 97 км – данные по излучению атомарного кислорода 557.7 нм: интерферометрические измерения (кружки) [13], лидарные данные (квадраты) [14] и оценки на основе интенсивности этой эмиссии (точки) [15]; 110 км – ионосферные измерения (точки) [7], данные некогерентного рассеяния (квадраты) [16].

температуры со скоростью около 0.7 К/год и 1985– 2006 гг. – тренд близок к значению –0.2 К/год. Такое уменьшение абсолютных значений отрицательного тренда в дальнейшем, по-видимому, может привести к изменению знака тренда. Такой вывод возникает в связи с наблюдаемым изменением векового хода солнечной активности [12]. Конечно, пока рано говорить о дальнейших закономерностях поведения тренда температуры, так как для этого необходимы дальнейшие наблюдения в течение, как минимум, двух-трех циклов солнечной активности.

На рис. 1 также приведено поведение среднегодовой температуры эмиссии атомарного кислорода 557.7 нм (~ 97 км) по данным интерферометрических [13] и лидарных [14] измерений на этой же высоте. Там же представлены оценки значений температуры, полученные на основе данных о поведении интенсивности эмиссии 557.7 нм [15]. Видно, что по всей совокупности данных (1924–1992 гг.) имеется слабая тенденция к уменьшению температуры на высоте ~ 97 км для средних широт. Линейный тренд температуры для этого временного интервала составляет около –0.1 К/год.

Оценки температуры в слое Е ионосферы (~ 110 км) [7] сделаны по результатам вертикального зондирования на станциях Москва (55.5° N), Слау (52.5° N) и Юлиусру (55.6° N) и данным измерений некогерентного рассеяния (1967–1975 гг.) на станции Сан-Сантин (44.6° N, 2° N) [16]. Согласно [7], с 1931 г. по настоящее время наблюдается систематический рост температуры атмосферы на высотах около 110 км со средней скоростью ~ +1 К/год.

3. Вариации высотного распределения среднегодовых значений температуры

Высотные среднегодовые профили температуры средней атмосферы для средних широт Северного полушария и их сопоставление со среднегодовыми значениями потока радиоизлучения $F_{10.7}$ представлены на рис. 2.

Рис. 2. Вертикальные среднегодовые профили температуры (30–110 км) для условий средних широт, полученные для периода 1955–1995 гг. на основе ракетных, спектрофотометрических и ионосферных измерений. Каждый профиль смещен относительно предыдущего на 10 К. Жирными линиями отмечены профили температуры через каждые пять лет, кружками и точками – высоты атмосферы, для которых температура равна 210–250 К соответственно. Масштаб шкалы температур указан в верхней левой части рисунка. Внизу представлены вариации уровня солнечной активности (среднегодовые значения индекса F_{107}).

На нем последовательно, со смещением на 10 К, показаны профили среднегодовых значений температуры с 1955 по 1995 гг. по ракетным (25, 30, 35, ..., 75 км), оптическим (87 и 97 км) и ионосферным (110 км) измерениям. Из рисунка следует, что среднегодовые высотные профили температуры систематически изменялись от года к году и, кроме того, на этих профилях появляется максимум температуры в интервале высот 80-100 км, амплитуда которого (∆T ≈ 20-25 K) коррелирует с уровнем солнечной активности. Этот максимум систематически появляется в периоды высокой солнечной активности на протяжении нескольких 11-летних циклов. Наличие максимума было также отмечено и на основе лидарных измерений, выполненных в 1990-1993 гг. на обсерватории Форт Коллинз (40.6° N) [17]. Появление максимума температуры в этой области высот авторы не связали с вариациями солнечной активности, имевшими место в этот период наблюдений, а предположили влияние извержения вулкана Пинатубо (июль 1991 г.).

Возможным объяснением появления максимума температуры может быть влияние процесса рекомбинации атомарного кислорода, по-видимому, главным образом за счет вариаций высоты максимума концентрации слоя атомарного кислорода, обусловленных изменением солнечной активности [18].

Приведенные профили температуры свидетельствуют также и о систематическом понижении высот, имеющих постоянное значение температуры (например, в интервале 55–80 км высоты с температурами 210 К (полые кружки) и 250 К (сплошные кружки)), что указывало на постепенное «оседание» средней атмосферы на протяжении рассматриваемого периода. Под оседанием понимается понижение высот слоев атмосферы, имеющих определенные заданные значения плотности.

4. Сезонные особенности многолетних трендов температуры средней атмосферы

Анализ многолетних вариаций среднемесячных температур на различных высотах позволил выявить существенные различия трендов для различных сезонов года. Наиболее заметное различие трендов наблюдалось в зимний и летний периоды. На рис. 3 показаны временные последовательности среднемесячных значений температуры для зимнего (декабрь–январь) и летнего (июнь–июль) сезонов года.

Особенно важный результат о многолетнем поведении температуры (при исключении влияния солнечной активности) получен для области мезопаузы (~ 87 км). Было обнаружено, что для зимних условий в течение периода 1955–1995 гг. происходило охлаждение мезопаузы, характеризуемое отрицательным трендом –0.9 К/год. Для летних условий величина многолетнего тренда температуры практически близка к нулю (рис. 3). Выявленное уменьшение разности температур атмосферы у основания термосферы между зимним и летним полушариями Земли может быть причиной заметного уменьшения скорости глобальной меридиональной циркуляции (от 6 до 3 м/с), обнаруженного на основе многолетних (1964–1996 гг.) измерений скорости ветра на этих высотах [19].

Рис. 3. Многолетние вариации среднемесячных зимних (декабрь–январь) и летних (июнь–июль) значений температуры на различных высотах [6]. Закрашенные значки – зима, незакрашенные – лето. Для высоты 87 км обозначено: кружки – Звенигород, квадраты – Вупперталь, треугольники – Якутск, обратные треугольники – Майнут, ромбы – Квебек и Делавар. Сплошные линии – линии регрессии.

Характер поведения трендов температуры в течение года особенно наглядно виден на рис. 4, где представлены их сезонные вариации на различных высотах в области средних широт. Точками показаны

Рис. 4. Сезонное поведение многолетних трендов (К/год) температуры на различных высотах атмосферы для средних широт: точки – среднемесячные измеренные значения, сплошные линии – аппроксимации суммой гармоник.

значения трендов по данным измерений для каждого месяца года, а сплошными линиями отображены аппроксимации сезонных вариаций тренда на основе суммы гармоник с периодами 12, 6, 4, 3, 2.4 и 2 месяца.

Из рисунка видно, что в летний период с увеличением высоты тренд практически не изменялся в стратосфере, составляя ~ 0.1 К/год. В мезосфере он резко возрастал, достигая максимального отрицательного значения ~ -1.1 К/год в слое 75-80 км, а затем его абсолютное значение заметно уменьшалось. Вблизи мезопаузы тренд имел практически нулевое значение и с ростом высоты переходил в область положительных значений, увеличиваясь до 1.1 К/год на высоте 107 км. В зимний период отрицательный тренд - (0.3-0.5) К/год уменьшался в средней стратосфере, переходил через нулевое значение и в верхней стратосфере становился положительным. Максимум положительного тренда от 0.3 К/год в феврале и ноябре до 0.7 К/год в декабре имел место в слое 40-45 км. Вблизи стратопаузы тренд отсутствовал, а в нижней мезосфере с увеличением высоты отрицательный тренд быстро возрастал. В средней и верхней мезосфере возрастание тренда происходило существенно медленнее: от -0.7 К/год на высоте 60 км до -0.9 К/год вблизи 87 км. На высоте максимума слоя Е тренд температуры в течение всего года имел положительное значение 1-2 К/год.

5. Многолетние изменения концентраций химически активных компонентов у основания термосферы

На основе теоретических представлений о механизмах возникновения эмиссий гидроксила, атомарного кислорода 557.7 нм и натрия 589.3 нм можно определять содержание озона и атомарного кислорода на высотах 80–100 км [11, 20]. Известно [20], что содержание озона связано с концентрацией атомарного водорода на высотах мезопаузы и что основным поставщиком водорода в верхней атмосфере является метан [21]. В последние десятилетия наблюдается существенный рост содержания метана в нижней атмосфере с трендом ~1.5 %/год [22].

Ракетные измерения концентрации атомарного водорода в области мезопаузы позволили выявить, что концентрация водорода имеет многолетний тренд и реагирует на вариации солнечной активности [21]. Обнаруженный положительный тренд содержания атомарного водорода хорошо согласуется с трендом метана [22]. Среднегодовое значение концентрации водорода для стандартных гелиогеофизических условий для высоты 87 км и 1972 г. равно $n_0(H) = 1.4 \cdot 10^8 \text{ см}^{-3}$ [20].

В работе [20] для выяснения закономерностей многолетних изменений высотных распределений озона и атомарного кислорода был произведен их расчет для среднегодовых условий 1955, 1972 и 1995 гг., редуцированных к одному и тому же уровню солнечной активности $F_{10.7} = 130$. Высотные распределения атомарного водорода были взяты по модели [23]. Результаты расчета высотного распределения концентрации атомарного кислорода и озона показаны на рис. 5. Среднее многолетнее содержание атомарного кислорода на высотах 90–110 км

Рис. 5. Среднегодовые высотные распределения концентраций озона (прерывистые линии) и атомарного кислорода (сплошные линии) в ночное время для условий 1955 г. (1), 1972 г. (2) и 1995 г. (3) [20], вычисленные на основе эмпирических моделей вариаций эмиссий ОН и 557.7 нм [6]. Внизу отдельно показаны многолетние изменения высот максимумов слоев О и О₃ на основе представленных высотных распределений их концентраций.

в течение рассматриваемого периода изменялось мало, в основном за счет опускания нижней грани-

цы слоя, в то время как содержание озона на высотах 80–100 км уменьшилось в 2–2.5 раза. Это связано, очевидно, с ростом содержания атомарного водорода, уменьшающего концентрацию озона за счет озоноводородной реакции. Положительный тренд интенсивности эмиссии ОН подтверждает этот вывод.

Заключение

Представленные выше результаты анализа показали, что практически во всей толще атмосферы происходят многолетние изменения температурного режима, а также ее состава. Причем абсолютные значения статистически значимых оценок трендов некоторых характеристик средней и верхней атмосферы существенно превышали значения климатических трендов, выявленных в тропосфере и приземном слое. Вследствие существования трендов температуры атмосферы на различных высотах, существующие модели как нейтральной атмосферы, так и ионосферы должны непременно учитывать изменения распределения температуры по всей ее толще. В противном случае без учета многолетних температурных изменений это будет приводить к разногласию между данными измерений и модельными расчетами. Эти факты служат серьезным аргументом в пользу необходимости активизации и расширения существующих методов и средств мониторинга верхних слоев атмосферы.

СПИСОК ЛИТЕРАТУРЫ

1. Dütsch H.V., Staehelin J. Discussion of the 60 year total ozone record at Arosa based on measurements of the vertical distribution and meteorological parameter // Planet. Space Sci. 1989. V. 37, N 12. P. 1587–1599.

2. Stolarski R., Bojkov R., Bishop L., et al. Measured trends instratospheric ozone // Science. 1992. V. 256, N 5055. P. 342–349.

3. Roble R.G., Dickinson R.F. How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermosphere? // Geophys. Res. Lett. 1989. V. 16, N 2. P. 1441–1444.

4. Rind D., Suozzo R., Balachandran N.K., Prather M.J. Climate changes and the middle atmosphere. Pt 1: the doubled CO2 climate // J. Atmos. Sci. 1990. V. 47, N 4. P. 475–494.

5. Кокин Г.А., Лысенко Е.В., Розенфельд С.Х. Изменения температуры страто- и мезосферы в период 1964–1988 гг. по данным ракетного зондирования // Изв. АН СССР. Физика атмосферы и океана. 1990. Т. 26, № 7. С. 702–710.

6. Шефов Н.Н., Семенов А.И., Хомич В.Ю. Излучение верхней атмосферы – индикатор ее структурных и динамических характеристик. М.: ГЕОС, 2006. 741 с.

7. Гивишвили Г.В., Лещенко Л.Н. Долговременные вариации температуры среднеширотной нижней термосферы // Докл. АН. 2000. Т. 371, № 4. С. 524–526.

8. Golitsyn G.S., Semenov A.I., Shefov N.N., et al. Long-term temperature trends in the middle and upper atmosphere // Geophys. Res. Lett. 1996. V. 23, N 14. P. 1741–1744.

9. Schmidlin F.J. Rocketsonde temperatures trend longterm stratospheric behavior // Paper C2-1-0002. 31 Scientific Assembly of COSPAR. Birmingham, July 14–21. 1996.

10. Розенфельд С.Х. Анализ регулярных составляющих рядов наблюдений, заданных на неравномерной последовательности точек // Метеорология и гидрология. 1986. № 3. С. 5–14.

11. Семенов А.И., Шефов Н.Н. Эмпирическая модель вариаций гидроксильного излучения // Геомагнетизм и аэрономия. 1996. Т. 36, № 4. С. 68–85.

12. Комитов Б.П., Кафтан В.И. Изменения солнечной активности последних тысячелетий. Возможен ли очередной долгопериодический солнечный минимум? // Геомагнетизм и аэрономия. 2003. Т. 43, № 4. С. 592–601.

13. Hernandez G., Killeen T.L. Optical measurements of winds and kinetic temperatures in the upper atmosphere // Adv. Space Res. 1988. V. 8, N 5–6. P. 149–213.

14. She C.Y., Yu J.R., Krueger D.A., Roble R., et al. Vertical structure of the midlatitude temperature from stratosphere to mesopause (30–105 km) // 1995. V. 20, N 4. P. 377–380.

15. Semenov A.I., Lysenko E.V. Long-term subsidence of the middle and upper atmosphere according to its ecological evolution // Environ. Radioecology and Appl. Ecology. 1996. V. 2, N 1. P. 3–13.

16. Alcaydé D., Fontanari J., Kockarts G., Bauer P., Bernard R. Temperature, molecular nitrogen concentration and turbulence in the lower thermosphere inferred from incoherent scatter data // Ann. Géophys. 1979. V. 35, N 2. P. 41–51.

17. Yu J.R, She C.Y. Climatology of a midlatitude mesopause region observed by a lidar at Fort Collins, Colorado (40.6° N, 105° W) // J. Geophys. Res. 1995. V. 100, N D4. P. 7441–7452.

18. Семенов А.И., Шефов Н.Н. Вариации температуры и содержания атомарного кислорода в области мезопаузы и нижней термосферы при изменении солнечной активности // Геомагнетизм и аэрономия. 1999. Т. 39. № 4. С. 87–91.

19. Мерзляков Е.Г., Портнягин Ю.И. Многолетние изменения параметров ветрового режима нижней термосферы умеренных широт (90–100 км) // Изв. АН. Физика атмосферы и океана. 1999. Т. 35, № 4. С. 531–542.

20. Семенов А.И. Многолетние изменения высотных распределений озона и атомарного кислорода в нижней термосфере // Геомагнетизм и аэрономия. 1997. Т. 37, № 3. С. 132–142.

21. Брасье Г., Соломон С. Аэрономия средней атмосферы. Л.: Гидрометеоиздат, 1987. 414 с.

22. WMO/UNEP, Scientific assessment of climate change. Intergovernmental panel on climate change. Geneva, 1990.

23. Keneshea T.J., Zimmermann S.P., Philbrick C.R. A dynamic model of the mesosphere and lower thermosphere // Planet. Space Sci. 1979. V. 27, N 4. P. 385–401.

Институт физики атмосферы им. А.М. Обухова РАН, Москва