
Секция D. Конденсированные состояния БШФФ – 2007. С. 303–305 

303 

УДК 530.145 

О МЕРАХ БЛИЗОСТИ И РАЗЛИЧИМОСТИ СМЕШАННЫХ КВАНТОВЫХ СОСТОЯНИЙ 

А.Э. Растегин, О.Н. Солдатенко  

ON MEASURES OF CLOSENESS AND DISTINGUISHABILITY OF MIXED QUANTUM STATES 

A.E. Rastegin, O.N. Soldatenko  

 
Обсуждаются различные меры близости и различимости матриц плотности. Детально анализируется синус угла ме-

жду состояниями. Как показало исследование литературы по данному вопросу, эта мера близости еще не была подробно 
изучена. Тем не менее, она естественно возникает в контексте передачи и обработки информации на квантовых носите-
лях. Синус угла между состояниями имеет много притягательных свойств, что делает его хорошей мерой для сравнения 
матриц плотности. Если синус угла между состояниями мал, то будут близкими распределения вероятностей, генери-
руемые этими состояниями для любого обобщенного измерения. Обсуждаются сходства и различия данной меры со 
следовой дистанцией и метрикой Бюрса. Степень совпадения – обобщение на случай смешанных квантовых состояний 
квадрата модуля скалярного произведения векторов состояния. В связи с этим показано, что существует бесконечно 
большое число аналогичных мер с теми же свойствами, за исключением мультипликативности. 

 
Different measures of closeness and distinguishability of density matrices are considered. The sine distance between mixed 

quantum states is thoroughly investigated. This distance does not seem to have been previously analyzed in the literature. Never-
theless, the sine distance naturally arises in the context of quantum information processing. As it is shown, this distance has many 
attractive features that make it a good measure of closeness of density matrices. We prove that if the sine distance between two 
quantum states is small then probability distributions generated by these states for any POVM measurement are close to each 
other. Relations and distinctions of the sine distance with the trace distance and the Bures metric are discussed. The fidelity is 
well-known generalization of the square-overlap of pure states to the case of mixed states. In this connection, we show that there 
is infinite number of similar measures with the same properties except the multiplicativity. 

 
 
Over the last few decades there have been impres-

sive theoretical and experimental advances in quantum 
information processing. The quantum cryptography can 
already be regarded as realized new technology for data 
protection [1]. The quantum factoring [2] and quantum 
searching [3] are important advances in quantum com-
putation. A design of efficient algorithm for task of 
quantum communication and computation demands that 
we compare results of probe quantum operations. So 
quantitative measures of closeness and distinguishabil-
ity of quantum (generally mixed) states are needed. 
Even in the case of pure states we must consider more 
than one way to fit the problem of comparison of quan-
tum states. In the present work the sine of angle be-
tween two states is considered as a distance measure. It 
will be referred as to “sine distance”. The use of the sine 
distance as distance measure provides new and fruitful 
viewpoint on the state-dependent cloning [4]. More re-
cently, the authors of [5] found that the above distance 
naturally arises in the context of quantum computation. 
But the sine distance has been not studied previously as 
independent notion. After brief outline of background 
material, we describe the basic properties of the sine 
distance. Further, the sine distance is considered in the 
context of quantum operations. In the present work by 
the quantum states we mean that ones are all normal-
ized. As every, we define the angle ( , ) [0; / 2]x yδ ∈ π  
between the pure states x  and y  by the natural rela-

tion ( , ) arccosx y x yδ ≡ . Pure states x  and 

y  are identical if and only if ( , ) 0x yδ = .  
Definition 1. Sine distance between two pure states 

is defined by 
( , ) sin ( , )С x y x y≡ δ . (1) 

But all the real devices are inevitably exposed to 
noise. So the pure states used will evolve into mixed 
states. How close are two mixed quantum states? We 
known that the square-overlap 

2
x y  is the prob-

ability that y  passes the yes/no test of “being the 

state x ”. However, there is no evident analog of yes/no 
test for mixed states. Nevertheless, we can extend to 
mixed states a few notions which are useful in the case 
of pure states. This is provided by the concept of purifi-
cations. If the quantum system S is considered then we 
append system Q, which is a copy of S. Further, we can 
imagine that a mixed state ρ  of S arises by partial trace 
operation from pure state of extended system S+Q. 
Namely, there is a pure state X , called “purification”, 
for which [6] 

{ }QTrace X Xρ = . (2) 

For any mixed states its purification can be made, 
and for given one such a pure state is not unique [6]. 
The angle ( , ) [0; / 2]Δ ρ σ ∈ π  between mixed states ρ 
and σ is then defined by 

( , ) min ( , )X YΔ ρ σ ≡ δ , (3) 

where the minimization is over all purifications X  of 

ρ and Y  of σ [7]. The properties of angle between 
mixed states are listed in [7]. We are now able to ex-
tend the notion of “sine distance” to the case of 
mixed states. 

Definition 2. Sine distance between mixed states ρ 
and σ is defined by 

( , ) sin ( , )С ρ σ ≡ Δ ρ σ . (4) 
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The sine distance obeys the following properties [8]. 
It ranges between 0 and 1, and C(ρ, σ)=0 if and only if 
ρ=σ. It is symmetric, i.e. C(ρ, σ)=C(ρ, σ). It satisfies 
the triangle inequality, i.e. C(ρ, σ)= C(ρ, ω)+ C(ρ, ω). 
So the sine distance is a metric on the space of quantum 
states It turns out that for any quantum operation the 
quantity C(ρ, σ) estimates the difference between prob-
abilities of processes beginning with inputs ρ and σ. 
Namely, the following statement takes place [8].  

Theorem 1. If the set { }μΕ  of operators specifies a 
quantum operation $( )ρ→ ρ  then 

{$( )} {$( )} ( , )Trace Trace Cρ − σ ≤ ρ σ , (5) 

{ } { }

2 ( , )

Trace Trace

C
μ μ μ μμ

Ε ρ Ε − Ε σ Ε

≤ ρ σ

∑ . (6) 

The measurement is an important type of quantum 
operation. In this case the input and output spaces are 
the same. As pointed out by Everett [9], a general treat-
ment of all observations by the method of projection 
operators is impossible. The most general quantum 
measurement is called a “positive operator valued 
measure”, or POVM. A POVM with M  distinct out-
comes is specified by a set of M positive operators μΑ  
satisfying 

Iμμ
Α =∑ , (7)  

where I  denotes the identity operator. Note that the 
number M  of different outcomes is not limited above 
by the dimensionality of Hilbert space, in contrast to 
von Neumann measurements. If the system S is pre-
pared in stateρ, then the probability of μ 'th outcome is  

( ) { }p Traceμ μρ ≡ ρ Α . (8) 

With each POVM element μΑ  one can associate an 
ideal quantum operation $μ  defined by 

$ ( )μ μ μρ ≡ Α ρ Α . (9) 

Applying now the statement of Theorem 1 we obtain 
the following result. 

Theorem 2. For arbitrary POVM measurement and 
any two states ρ and σ there holds 

( ) ( ) ( , )p p Cμ μρ − σ ≤ ρ σ , (10) 

( ) ( ) 2 ( , )p p Cμ μμ
ρ − σ ≤ ρ σ∑ . (11) 

Thus, if the sine distance C(ρ, σ) is small then prob-
ability distributions generated by states ρ and σ for arbi-
trary (generalized) measurement are close to each other. 
So the sine distance can be regarded as a good measure 
of closeness of quantum states.  

The sine distance is closely related to the trace dis-
tance [10]. Moreover, in the case of pure states these 
two distance measures are equal to each other. Recall 
the definition of the trace distance. Let A  denote the 

positive square root of †A A  (for any positive operator 
exists a unique positive square root [11]). Then the trace 
distance D(ρ, σ) between states ρ and σ is defined by 

1( , )
2

D Traceρ σ ≡ ρ−σ . (12) 

The trace distance has many attractive properties 
that makes it a suitable measure of closeness of quan-
tum states. The sine distance can simply be expressed in 
the terms of fidelity function. Recall that the fidelity 
function generalizes the square-overlap. More precisely, 
for given states ρ and σ of system S the fidelity is de-
fined as 

2
( , ) maxF X Yρ σ ≡ , (13) 

where the maximum is taken over all purifications X  

of ρ and Y  of σ [6]. Using Eqs. (3), (4) and (13), it is 
easy to check that 

( , ) 1 ( , )С Fρ σ = − ρ σ . (14) 

As it is mentioned above, the square-overlap is the 
natural and physically motivated measure of distin-
guishability of pure states. We wish to extend the notion 
of square-overlap to the case of mixed states. It is natu-
ral to impose the following axioms: (I) 0 ( , ) 1G≤ ρ σ ≤  
and G(ρ, σ)=0 if and only if σ=ρ; (II) G(ρ, σ)= G(σ, ρ); 
(III) If x xρ =  and y yσ =  then 

2
( , )G x yρ σ = . 

The fidelity function is the well-known measure sat-
isfying the axioms (I)–(III). However, there is an infi-
nite number of those measures that obey these axioms. 
Indeed, let p and q be positive real numbers meeting 
p+q=1. We define a measure 

2 2( , ) 1 ( , ) 1 ( , )G p C q Dρ σ = − ρ σ + − ρ σ , (15) 

where C(ρ, σ) is the sine distance and D(ρ, σ) is the 
trace distance. Both the C(ρ, σ) and D(ρ, σ) ranges be-
tween 0 and 1. Further, C(ρ, σ)=0  as well as D(ρ, σ)=0 
if and only if ρ=σ. So the measure defined by Eq. (15) 
satisfies the axiom (I). Both the sine distance and the 
trace distance are symmetric, so that the defined by Eq. 
(15) function is also symmetric. In the case of pure 
states x xρ =  and y yσ =  we have  

2
( , ) ( , ) 1C D x yρ σ = ρ σ = − . (16) 

Due to Eq. (16) and p+q=1, the measure defined by 
Eq. (15) satisfies the axioms (I)-(III). It should be 
pointed out that the fidelity is multiplicative function. 
That is, 

( , ) ( , ) ( , )F F Fρ⊗ω σ⊗χ = ρ σ ω χ . (17) 

On the contrary, the measure defined by Eq. (15) is 
not multiplicative.  

In addition, the sine distance is closely related to the 
Bures metric. As it is well known, this metric is equal to 
the square root of the quantity 2 ( 1 )F− , where F 
denotes the fidelity [6]. In terms of the angle between 
quantum states the Bures metric B(ρ, σ) is expressed as 

( )( , ) 2 sin ( , ) 2B ρ σ = Δ ρ σ . (18)  
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Thus, for small values of angle ∆(ρ, σ) the Bures 
metric is approximately equal to the sine distance. 
Which of these distances is most preferable? One may 
scarcely maintain that such a formulation of question is 
justified. Rather, some distance should be preferred in a 
first kind of tasks, other distance should be preferred in 
a second kind of tasks, and so on. But the following 
must be emphasized. The sine distance lies in the inter-
val [0;1], whereas the angle lies in [0; / 2]π  and the Bu-

res measure lies in [0; 2] . As the range of distance 
values, the interval [0;1] seems to be more natural. In 
addition, the sine distance between two states allows to 
estimate directly a distinction between their observable 
effects. So the sine distance is a reliable measure of 
closeness of quantum states. 
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