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O MEPAX BJIN30CTH U PA3JIMYUMOCTHU CMEIIAHHBIX KBAHTOBBIX COCTOSIHUI
A.9. Pacrernn, O.H. ConzaTeHko
ON MEASURES OF CLOSENESS AND DISTINGUISHABILITY OF MIXED QUANTUM STATES
A.E. Rastegin, O.N. Soldatenko

OO6CyXIat0Tcs pasIUIHbIe MEPhI OIM30CTH U PAa3IMIUMOCTH MAaTPHI[ INIOTHOCTH. [leTalbHO aHAIM3UPYETCsS CHHYC yTJia Me-
XKy cocTosHIAMH. Kak mokaszaino uccieqoBaHue JTUTEPaTy eI 0 JAHHOMY BOIIPOCY, 3Ta Mepa OJIM30CTH ele He ObLia mogpoOHO
n3ydeHa. TeM He MeHee, OHa €CTECTBEHHO BO3HHMKAET B KOHTEKCTE Iepeadn U 00padoTky nH(OpMaIuy Ha KBAHTOBEIX HOCHTE-
1sx. CuHyC yriaa MexXJay COCTOSHHMSAMU UMEET MHOI'O IIPUTATraTeIbHBIX CBOMCTB, YTO JEJIAECT €ro XOpouIei Mepoi sl CpaBHEHUS
MaTpull IIoTHOCTH. Eciu cuHyc yrila Mexay COCTOSIHUSIMH Mall, TO OyIyT OJM3KMMH pacupeleieHus BEpOSITHOCTEH, TeHepH-
pyeMble 3TUMH COCTOSHHUAMHU sl J1000ro 00o0meHHoro uzmepenus. OOCYXKIAOTCS CXOACTBA U Pa3iIM4usl JJAHHOW Mepbl CO
cienoBoi aucraHuuei u MeTpukoil bropca. Crenens coBnaseHus — 006001IeHNe Ha ciy4yaid CMEIIaHHBIX KBAaHTOBBIX COCTOSHUI
KBaJipaTa MOIYJsl CKaJISIPHOTO NPOM3BEAEHUS BEKTOPOB COCTOSIHUS. B CBA3M ¢ 3TUM MOKa3aHO, YTO CYIIECTBYET OECKOHEUHO
0O0ITBIIIOE YHCIIO AHAIOTHYHBIX MEpP C TEMH XK€ CBOMCTBAMH, 33 HCKITIOYEHHEM MYJIbTHILTNKATHBHOCTH.

Different measures of closeness and distinguishability of density matrices are considered. The sine distance between mixed
quantum states is thoroughly investigated. This distance does not seem to have been previously analyzed in the literature. Never-
theless, the sine distance naturally arises in the context of quantum information processing. As it is shown, this distance has many
attractive features that make it a good measure of closeness of density matrices. We prove that if the sine distance between two
quantum states is small then probability distributions generated by these states for any POVM measurement are close to each
other. Relations and distinctions of the sine distance with the trace distance and the Bures metric are discussed. The fidelity is
well-known generalization of the square-overlap of pure states to the case of mixed states. In this connection, we show that there

is infinite number of similar measures with the same properties except the multiplicativity.

Over the last few decades there have been impres-
sive theoretical and experimental advances in quantum
information processing. The quantum cryptography can
already be regarded as realized new technology for data
protection [1]. The quantum factoring [2] and quantum
searching [3] are important advances in quantum com-
putation. A design of efficient algorithm for task of
quantum communication and computation demands that
we compare results of probe quantum operations. So
quantitative measures of closeness and distinguishabil-
ity of quantum (generally mixed) states are needed.
Even in the case of pure states we must consider more
than one way to fit the problem of comparison of quan-
tum states. In the present work the sine of angle be-
tween two states is considered as a distance measure. It
will be referred as to “sine distance”. The use of the sine
distance as distance measure provides new and fruitful
viewpoint on the state-dependent cloning [4]. More re-
cently, the authors of [5] found that the above distance
naturally arises in the context of quantum computation.
But the sine distance has been not studied previously as
independent notion. After brief outline of background
material, we describe the basic properties of the sine
distance. Further, the sine distance is considered in the
context of quantum operations. In the present work by
the quantum states we mean that ones are all normal-
ized. As every, we define the angle 6(x,y)e[0;7/2]

between the pure states |x> and | y) by the natural rela-
tion J(x,y)= arccos |<x| y) | Pure states |x> and

| y) are identical if and only if &(x, y) =0.

Definition 1. Sine distance between two pure states
is defined by

C(x,y)=sind(x,y). (1)

But all the real devices are inevitably exposed to
noise. So the pure states used will evolve into mixed
states. How close are two mixed quantum states? We

known that the square-overlap | <x|y> |2 is the prob-
ability that | y> passes the yes/no test of “being the

state | x) ”. However, there is no evident analog of yes/no
test for mixed states. Nevertheless, we can extend to
mixed states a few notions which are useful in the case
of pure states. This is provided by the concept of purifi-
cations. If the quantum system S is considered then we
append system Q, which is a copy of S. Further, we can
imagine that a mixed state p of S arises by partial trace
operation from pure state of extended system S+Q.
Namely, there is a pure state |X > , called “purification”,

for which [6]
p:TraceQ{ |X> <X| } )

For any mixed states its purification can be made,
and for given one such a pure state is not unique [6].
The angle A(p,0)€[0;m/2] between mixed states p

and ois then defined by
A(p,0) =min 3(X,Y), 3)

where the minimization is over all purifications |X > of

p and |Y ) of o [7]. The properties of angle between

mixed states are listed in [7]. We are now able to ex-
tend the notion of “sine distance” to the case of
mixed states.

Definition 2. Sine distance between mixed states p
and ois defined by

C(p,0) =sinA(p,o). 4)
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The sine distance obeys the following properties [8].
It ranges between 0 and 1, and C(p, 6)=0 if and only if
p=o. It is symmetric, i.e. C(p, 6)=C(p, o). It satisfies
the triangle inequality, i.e. C(p, )= C(p, ®)+ C(p, ®).
So the sine distance is a metric on the space of quantum
states It turns out that for any quantum operation the
quantity C(p, o) estimates the difference between prob-
abilities of processes beginning with inputs p and o.
Namely, the following statement takes place [8].

Theorem 1. If the set {E,} of operators specifies a

quantum operation p — $(p) then
| Trace(S(p)} ~Trace(S(o)} |< C(p,0), ()
z“ | Trace{E, p E, }—TracelE, o E“}|
< 2 C(p,o)

The measurement is an important type of quantum
operation. In this case the input and output spaces are
the same. As pointed out by Everett [9], a general treat-
ment of all observations by the method of projection
operators is impossible. The most general quantum
measurement is called a “positive operator valued
measure”, or POVM. A POVM with M distinct out-

comes is specified by a set of M positive operators A,

(6)

satisfying
DAL=, @)

where [ denotes the identity operator. Note that the
number M of different outcomes is not limited above
by the dimensionality of Hilbert space, in contrast to
von Neumann measurements. If the system S is pre-
pared in statep, then the probability of p 'th outcome is

p.(p)=Tracelp A }. (3)
With each POVM element A, one can associate an

ideal quantum operation $, defined by

$,(m=\A, p JA,. ©)

Applying now the statement of Theorem 1 we obtain
the following result.

Theorem 2. For arbitrary POVM measurement and
any two states p and o there holds

| ()~ p,(0) |<C(p.0). (10)

> | n@-p.(0) |<2 Clp.o). (1)

Thus, if the sine distance C(p, o) is small then prob-
ability distributions generated by states p and o for arbi-
trary (generalized) measurement are close to each other.
So the sine distance can be regarded as a good measure
of closeness of quantum states.

The sine distance is closely related to the trace dis-
tance [10]. Moreover, in the case of pure states these
two distance measures are equal to each other. Recall

the definition of the trace distance. Let |A| denote the
positive square root of A'4 (for any positive operator

exists a unique positive square root [11]). Then the trace
distance D(p, o) between states p and ¢ is defined by

D(p,0) = 1

5 (12)
The trace distance has many attractive properties
that makes it a suitable measure of closeness of quan-
tum states. The sine distance can simply be expressed in
the terms of fidelity function. Recall that the fidelity
function generalizes the square-overlap. More precisely,
for given states p and o of system S the fidelity is de-
fined as

Trace | p—oC |

2
El

F(p,0) =max | <X|Y>

(13)
where the maximum is taken over all purifications |X )

of p and ‘Y> of & [6]. Using Egs. (3), (4) and (13), it is
easy to check that

C(p,0)=+/1-F(p,0) .

As it is mentioned above, the square-overlap is the
natural and physically motivated measure of distin-
guishability of pure states. We wish to extend the notion
of square-overlap to the case of mixed states. It is natu-
ral to impose the following axioms: (I)0 < G(p,5) <1

and G(p, 0)=0 if and only if o=p; (II) G(p, o)= G(o, p);
an It p= |x> <x| and o= |y> <y| then

G(p-0) =] (x[3) [

The fidelity function is the well-known measure sat-
isfying the axioms (I)—(IIT). However, there is an infi-
nite number of those measures that obey these axioms.
Indeed, let p and g be positive real numbers meeting
ptq=1. We define a measure

G(p,0)=p  1-C*(p,0) +q +/ 1-D*(p,0), (15)

where C(p, o) is the sine distance and D(p, o) is the
trace distance. Both the C(p, 5) and D(p, o) ranges be-
tween 0 and 1. Further, C(p, 6)=0 as well as D(p, 6)=0
if and only if p=c. So the measure defined by Eq. (15)
satisfies the axiom (I). Both the sine distance and the
trace distance are symmetric, so that the defined by Eq.
(15) function is also symmetric. In the case of pure

states p:|x> <x| and cs:|y> <y| we have

C(p,5) = D(p,5) =4/ 1—| <x|y> |2 .

Due to Eq. (16) and p+¢=1, the measure defined by
Eq. (15) satisfies the axioms (I)-(III). It should be
pointed out that the fidelity is multiplicative function.
That is,

(14)

(16)

F(p®w,087)=F(p,0) F(o,%). (17)

On the contrary, the measure defined by Eq. (15) is
not multiplicative.

In addition, the sine distance is closely related to the
Bures metric. As it is well known, this metric is equal to
the square root of the quantity 2 ( 1-JF ), where F

denotes the fidelity [6]. In terms of the angle between
quantum states the Bures metric B(p, o) is expressed as

B(p,c)=2 sin(A(p,0)/2). (18)
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Thus, for small values of angle A(p, o) the Bures
metric is approximately equal to the sine distance.
Which of these distances is most preferable? One may
scarcely maintain that such a formulation of question is
justified. Rather, some distance should be preferred in a
first kind of tasks, other distance should be preferred in
a second kind of tasks, and so on. But the following
must be emphasized. The sine distance lies in the inter-
val [0;1], whereas the angle lies in [0;7t/2] and the Bu-

res measure lies in [o;ﬁ]. As the range of distance

values, the interval [0;1] seems to be more natural. In
addition, the sine distance between two states allows to
estimate directly a distinction between their observable
effects. So the sine distance is a reliable measure of
closeness of quantum states.
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