УЛК 525.24

СВЯЗЬ ЧАСТОТЫ ПОЯВЛЕНИЯ АВРОРАЛЬНОГО ПОГЛОЩЕНИЯ С ЕГО ИНТЕНСИВНОСТЬЮ

В.И. Маныкина, В.Д. Соколов, С.Н. Самсонов

CORRELATION BETWEEN FREQUENCY OF AURORAL ABSORPTION AND ITS INTENSITY

V.I. Manykina, V.D. Sokolov, S.N. Samsonov

Изучена зависимость частоты появления аврорального поглощения от его интенсивности по данным риометрических наблюдений в Тикси за 11-летний цикл солнечной активности с 1986 по 1997 гг. Обнаружено, что такая зависимость хорошо аппроксимируется соотношением $\lg N = a - kA$. Доля интенсивных поглощений зависит от сезона и времени суток. Зимой и в ночные часы доля таких поглощений больше, чем летом и в вечерние часы. Показано, что частота появления аврорального поглощения малой интенсивности (4 < 1 дБ) связана с магнитосферными возмущениями, возникающими в период высокой пятнообразовательной солнечной активности, а интенсивные поглощения связаны с наличием высокоскоростных потоков солнечного ветра. При этом частота появления с амплитудами более 1, 2 и 3 дБ возрастает в 2, 3 и 5 раз соответственно в годы их максимального появления.

The dependence of appearance frequency of the auroral absorption on its intensity by data of riometer observations at the Tixie for the 11-year solar activity cycle from 1986 to 1997 has been studied. It has been found that such a dependence is well approximated by $\lg N = a - kA$. A portion of intense absorptions dependents on a season and a day time. In winter and at night hours a portion of such absorptions is more than in summer and at evening hours. It is shown that the appearance frequency of auroral absorption of small intensity (A<1 dB) is associated with magnitospheric disturbances occurring in the period of high solar activity (by the number of sunspot) and the intense absorption is related to the presence of high-speed solar wind streams. In this case, the appearance frequency of auroral absorption with amplitudes more than 1, 2 and 3 dB increases by a factor of 2, 3 and 5, respectively during the years of their maximum appearance.

Введение

Частота встречаемости аврорального поглощения (АП) изменяется в течение суток и по сезонам. Она также изменяется с 11-летним циклом солнечной активности [2]. Сведений о зависимости частоты появления АП от интенсивности поглощения мало. В работе [3] приведено распределение частоты появления АП в зависимости от величины поглощения в каждом 15-минутном интервале во время экстремально возмущенного месяца (февраль, 1958 г.) по наблюдениям в Колледже (Аляска). Отмечено, что около 63 % наблюдаемых поглощений имеют интенсивность меньше 2 дБ.

Дриацкий В.М. [1] приводит частоту появления аврорального поглощения, отмечая, что в ночное время чаще наблюдаются более интенсивные поглощения, чем днем и вечером.

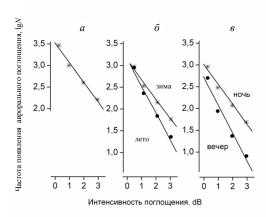
Цель настоящей работы заключается в исследовании зависимости частоты появления АП от его интенсивности и ее изменение в течение суток, сезона и 11-летнего цикла солнечной активности.

Экспериментальные данные

Риометрические измерения выполнены в б. Тикси с 1986 по 1997 гг. на частоте 32 МГц с антенной типа волновой канал, направленной на полюс мира. Из наблюдаемых поглощений с интенсивностью 0.3 дБ и более и продолжительностью не менее 10 мин в час были исключены случаи поглощения в полярной шапке (ППШ), обусловленные протонными событиями от Солнца, и внезапные поглощения космического радиошума, вызванные солнечными рентгеновскими вспышками. Процедура идентификации и исключения таких событий описана в работе [2]. Такой метод обработки позволил рассматривать оставшийся массив данных как обусловленный высыпанием энергичных электронов.

Анализ зависимости частоты появления АП от по-

роговой интенсивности показал, что она удовлетворительно аппроксимируется зависимостью $\lg N(>A)=a-kA$. Параметры a и k были определены методом наименьших квадратов. Экспериментальные данные за 1991 и 1996 гг. не использовались из-за пропусков в наблюдениях. На рис. 1, a приведены среднегодовое распределение частоты появления АП в зависимости от интенсивности за все 10 лет наблюдения и аппроксимирующий их график.

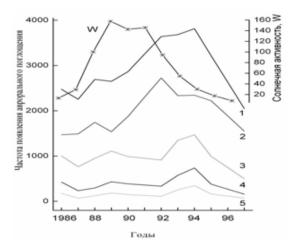

Отдельно были вычислены параметры a и k для зимних (XI, XII, I, II) и летних (V, VI, VII, VIII) месяцев. За все 10 лет величина k летом систематически больше, чем зимой. Средние за 10 лет распределения N(>A) летом и зимой и аппроксимирующие их графики приведены на рис. 1, δ . Видно, что различие между данными для зимы и лета однозначное.

Так же было найдено для каждого года распределение N(>A) в вечерние (16–21 LT) и ночные (23–04 LT) часы. Согласно работе [4], в эти часы наблюдается наибольшее различие в жесткости спектра высыпающихся электронов. Величина k в вечерние часы систематически больше, чем в ночные.

Среднее за 10 лет распределение частоты появления АП в вечерние и ночные часы и аппроксимирующие их графики приведены на рис 1.6.

Обсуждение результатов

Представленные на рис. 1 данные распределения частоты появления АП от его пороговой интенсивности позволяют судить об изменении доли интенсивных поглощений по сезонам, времени суток и в целом в 22-м цикле солнечной активности. Как было отмечено выше, экспериментальные данные могут быть аппроксимированы зависимостью вида $\lg N(>A)=a-kA$. Параметр k в 11-летнем цикле изменяется в широких пределах — от 0.369 до 0.552. Какой-либо определенной зависимости изменения k от фазы солнечной активности не наблюдается.


Рис. 1. Распределение частоты появление аврорального поглощения от его пороговой интенсивности.

На рис. 2 представлены изменение солнечной активности в 22-м цикле и соответствующие изменения N(>A). Видно, что изменение частоты появления АП с интенсивностью >0.3 дБ не соответствует изменению солнечной активности. Это было отмечено в работе [2]. Изменение частоты появления АП в большей степени зависит от изменения частоты и интенсивности высокоскоростных потоков солнечного ветра. Характер изменения со временем частоты появления АП с интенсивностью больше 1, 2 и 3 дБ существенно отличается от соответствующего изменения N(>0.3 дБ). Чтобы сделать эту разницу более наглядной, построена кривая 2, соответствующая частоте появления АП с интенсивностью от 0.3 до 1.0 дБ. Видно, что изменение данных N(0.3 < A < 1.0) существенно отличается от соответствующих изменений N(>1; 2; 3) – кривые 3, 4 и 5. На трех последних кривых ясно видно возрастание доли интенсивных поглощений в 1993-1995 гг., когда наблюдаются наиболее часто высокоскоростные потоки солнечного ветра.

Анализируя временной ход изменения N(0.3 < A < 1.0), приходим к заключению, что с 1987 по 1993 г. имеет место много поглощений малой интенсивности.

На основании совокупности экспериментальных данных можно предположить, что причиной АП малой интенсивности являются магнитосферные возмущения, обусловленные пятнообразовательной деятельностью Солнца в конце фазы максимума и начале фазы спада активности. Появление АП с интенсивностью больше 1 дБ является следствием воздействия высокоскоростных потоков солнечного ветра на магнитосферу. При этом, возможно, изменяется как поток, так и вид спектра высыпающихся электронов.

Как было отмечено выше, зимой значение параметра k систематически меньше, чем летом. Средняя за 10 лет величина k=0.603 летом и 0.448 зимой, т. е. доля интенсивных поглощений зимой больше, чем летом. В работе [5] было показано, что жесткость спектра высыпающихся электронов не зависит от сезона. Если это так, следует предположить, что наблюдаемое различие в доле интенсивных поглощений обусловлено различием величины потока высыпающихся электронов зимой и летом. В зимнее время

Рис. 2. Изменение солнечной активности в 22-м цикле и частоты появления аврорального поглощения.

величина потока высыпающихся электронов в среднем больше, чем летом.

На рис. 1, в показана зависимость частоты появления АП от его интенсивности в вечерние и ночные часы. Отличие N(>A) в вечерние и ночные часы однозначное. В среднем за 10 лет параметр k=0.458ночью и 0.643 вечером, т. е. в ночные часы доля интенсивных поглощений больше, чем в вечерние. Согласно работе [5], в вечерне-полуночные часы (20-03 LT) характерны высыпания электронов с мягким спектром, а в утренние часы (03-12 LT) - с жестким. В этой же работе было показано, что поток электронов в ночное время должен быть больше, чем утром, на два порядка, чтобы обеспечить одинаковую интенсивность поглощения. Таким образом, в ночном секторе мягче спектр высыпающихся электронов, но больше их поток. Сопоставляя полученные нами данные о доле интенсивных поглощений вечером и ночью, мы склонны считать, что наблюдаемое различие в распределении N(>A) обусловлено в большей степени различием потоков высыпающихся электронов в этих секторах суток.

Выволы

- 1. Анализ распределения частоты появления АП по интенсивности показал, что в течение 11-летнего цикла солнечной активности доля интенсивных поглощений меняется в широких пределах. Частота появления АП с интенсивным поглощением (>1, 2 и 3 дБ) существенно зависит от скоростных потоков солнечного ветра, возрастая в 2, 3 и 5 раз соответственно в годы их максимального появления. А частота появления АП малой интенсивности (A<1 дБ) связана с магнитосферными возмущениями, обусловленными пятнообразовательной солнечной активностью.
- 2. Доля интенсивных поглощений зависит от сезона и времени суток. Зимой и в ночные часы доля интенсивных поглощений больше, чем летом и вечером. Изменение вида спектра высыпающихся энергичных электронов, по-видимому, играет малую роль в изменении доли интенсивных поглощений. Определяющим фактором изменения доли интенсивных поглощений является величина потока высыпающихся электронов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Дриацкий В.М. Природа аномального поглощения космического радиоизлучения в нижней ионосфере высоких широт. Л.: Гидрометеоиздат, 1974. 224 с.
- 2. Кузьмин В.А., Соколов В.Д., Безродных И.П. Вариации частоты высыпаний энергичных частиц в 22-м цикле солнечной активности // Геомагнетизм и аэрономия. 2000. Т. 40, N 6. С. 104–106.
- 3. Basler Ray P. Radio Wave Absorption in the Auroral Ionosphere // J.Geophys. Res. 1963. V. 68, N 16. P. 4665–4681.
- 4. Bewersdorff A., Dion J., Kremser G., Keppler E., et al. Diurnal energy variation of auroral X-rays // Ann. Geophys. 1966. V. 22, N 1. P. 23–30.
- 5. Осепян А.П., Смирнова Н.В., Кирквуд Ш. Суточные и сезонные вариации энергетического спектра высыпающихся электронов по данным измерений электронной концентрации методом некогерентного рассеивания радиоволн // Геомагнетизма и аэрономия. 1999. Т. 37, Вып.4. С. 348–355.

Институт космофизических исследований и аэрономии им. Ю.Г.Шафера СО РАН, Якутск