УДК 523.98

ВОЗМУЩЕННАЯ ЗОНА И УДАРНАЯ ВОЛНА, ВОЗБУЖДАЕМЫЕ КОРОНАЛЬНЫМ ВЫБРОСОМ МАССЫ

М.В. Еселевич, В.Г. Еселевич

DISTURBED REGION AND SHOCK WAVE CAUSED BY CORONAL MASS EJECTION

M.V. Eselevich, V.G. Eselevich

Впервые экспериментально доказано существование перед корональным выбросом массы (КВМ) возмущенной зоны и исследовано ее изменение при возрастании скорости КВМ. Показано, что при скорости КВМ, порядка и выше локальной альвеновской скорости V_A , впереди возмущенной зоны формируется ударная волна и на расстояниях $R < 30 R_0 (R_0 - радиус Солнца)$ от центра Солнца ширина ударного фронта составляет порядка длины свободного пробега относительно парных протон-протонных соударений, т. е. механизм диссипации энергии во фронте является столкновительным.

First experimental proof is given for the existence of a disturbed region before a coronal massejection (CME), and its change with increase of CME speed is studied. For CME speed exceeding the local Alfven speed a shock wave is formed before a disturbed region. The shock front width is demonstrated to have a (R_0 is the sun's radius) scale of the order of the free path for proton-proton collisions, i. e. the dissipation mechanism in the front is collisional at $R < 30 R_0$.

Введение

Экспериментально показано, что в гелиосфере корональные выбросы массы (КВМ) с достаточно большими скоростями возбуждают ударную волну. Об этом свидетельствуют прямые спутниковые измерения параметров плазмы солнечного ветра, и такие ударные волны достаточно хорошо изучены [1].

О том, возбуждают ли КВМ ударную волну уже в солнечной короне (где скорости отдельных КВМ могут быть достаточно велики), можно судить в основном по косвенным данным. В первую очередь к таким данным относятся всплески радиоизлучения II типа, которые связывают с распространением ударных волн в короне [2], вызванных как вспышками, так и КВМ. Кроме того, в ряде событий КВМ с помощью инструмента UVCS/SOHO [3] в области за предполагаемым фронтом ударной волны было зарегистрировано изменение в ультрафиолетовом спектре, связанное с нагревом вследствие сжатия плазмы в ударном фронте. Таким образом, есть основания полагать, что при скоростях, больших локальной альвеновской скорости, КВМ в короне возбуждают впереди себя ударную волну. Однако обнаружить область сжатия, связанную с ударной волной на изображениях короны в белом свете, которые отражают распределение плотности, оказалось непростой задачей. Здесь могут быть разные подходы к проблеме: в [4] предполагаемое движение ударной волны регистрировалось по характеру отклонения окружающих выброс корональных стримеров, а в [5] скачок плотности на фланге одного КВМ авторы интерпретировали как ударный разрыв, подтверждая это моделирование в МГД-приближении. Однако отличить ударную волну, например, от обычного токового слоя или просто волны сжатия при таком подходе практически невозможно. В этой связи примечательна достаточно давняя работа [6], в которой на качественном уровне было показано, что при большой скорости КВМ возмущения не распространяются впереди его фронта. Эта работа показывает важность исследования области впереди КВМ. В работе [7] для нее было введено общее понятие «возмущенная зона», под которой подразумевается область, заполненная как энергией отраженных от КВМ частиц, так и энергией возбуждаемых КВМ колебаний. Там же было показано, что при скоростях КВМ. больших альвеновской скорости. впереди КВМ наблюдается образование «убегающего» разрыва концентрации плазмы, который на расстояниях $R < 20R_0$ может быть интерпретирован как столкновительная ударная волна. Данные инструмента LASCO/SOHO по регистрации КВМ дают уникальную возможность не только доказать существование возмущенной зоны, но и детально исследовать процесс ее трансформации в зависимости от скорости КВМ. Это связано с тем, что за последние 10 лет на LASCO/SOHO были зарегистрированы тысячи событий КВМ со скоростями в диапазоне от нескольких десятков до нескольких тысяч километров в секунду. Величина альвеновской скорости в короне лежит внутри этого диапазона скоростей, таким образом можно детально исследовать условия перехода через альвеновскую скорость.

Целью настоящей работы является исследование, с использованием данных LASCO/SOHO, возмущенной зоны и ударной волны, возникающих впереди КВМ в короне.

Данные и метод анализа

Для анализа использовались калиброванные изображения солнечной короны в белом свете, полученные на коронографах LASCO C2 и C3 космического аппарата SOHO [8]. Значения яркости Р в этих изображениях выражены в единицах средней яркости Солнца (P_{msb}). Поле зрения инструментов составляет соответственно $2-6R_0$ и $4-30R_0$. В основном были использованы два метода представления данных. Первый из них, аналогичный процедуре, примененной в [7], основан на вычитании локального фона в изображении и повышает контраст наблюдаемых в короне структур. Это позволяет судить о мгновенном положении КВМ и его частей, а также возмущений в корональной плазме. Во втором методе использовалась разность двух изображений короны, полученных в моменты t и t_0 ($t > t_0$) Момент t_0 был фиксированным в каждом событии и выбирался до момента появления первых признаков КВМ в поле зрения коронографа. По таким разностным изобрастроились распределения «избыточной жениям массы» в единицах г/см² по аналогии с [9]. Получен-

Рис. 1. Изменение возмущенной зоны в событии КВМ 2 июня 1998 г.

ные распределения избыточной массы ρ использовались для исследования динамики КВМ и возмущенной зоны впереди его фронта. Отметим, что интеграл от ρ по площади какого-либо участка изображения короны позволяет вычислить изме-нение массы, произошедшее за время от t_0 до t, однако эта величина будет нижней оценкой реального изменения массы.

Изменение возмущенной зоны в зависимости от скорости КВМ

При движении КВМ в короне Солнца впереди него возникает возмущенная зона. Рассмотрим более детально, как это выглядит, на конкретном примере КВМ, произошедшего 2 июня 1998 г. позиционный угол (РА≈240°, начало ≈08:10). При наблюдении в белом свете это событие имеет яркую переднюю фронтальную структуру (FS), которая окружает область пониженной плотности плазмы (cavity), и включает в себя яркую внутреннюю часть (core). Это видно на рис. 1, б (слева), где показаны изображения с вычтенным фоном для четырех моментов времени КВМ 2 июня 1998 г. Справа приведены радиальные распределениях $\rho(R)$ «избыточной массы» для этих же моментов. На этих распределениях видно, что возмущения в короне распространяются далеко впереди фронтальной структуры КВМ в течение интервала времени 09:04–10:05 (рис. 1, *a*, б): передняя часть распределений представляет собой очень плавно спадающий профиль, который слева переходит в FS КВМ. Однако, начиная с момента времени 11:41 (а возможно несколько раньше), ситуация резко меняется: в передней части возмущенной зоны, достигшей расстояния $R \approx 8.5 R_0$, возникает разрыв в распределении $\rho(R)$ на масштабе $\delta_F \approx 0.7 R_0$ (рис. 1, *e*, справа). При дальнейшем распространении разрыва его размер δ_F постепенно увеличивается (рис. 1, *e*, справа). Появившемуся разрыву, обозначенному как FS(s), теперь соответствует яркое переднее кольцо на изображениях с вычтенным фоном (рис. 1, *e*, *c*, слева).

Причину такого изменения возмущенной зоны можно объяснить, если учесть, что скорость КВМ при движении от Солнца увеличивается и на $R \approx 6R_0$ достигает значения V≈660 км/с. Относительно окружающего солнечного ветра на этих расстояниях его скорость составляет ≈600 км/с, что близко значению локальной альвеновской скорости. При дальнейшем движении КВМ его скорость продолжает нарастать, а альвеновская скорость падать. Таким образом, образование разрыва вполне можно связать с формированием ударной волны. Отметим, что для КВМ с меньшими скоростями такого изменения возмущенной зоны не наблюдалось, в то время как для КВМ, имеющих большие скорости (>800 км/с), возмущенная зона оказывалась ограниченной спереди разрывом на более близких расстояниях от Солнца.

Размер разрыва в зависимости от расстояния

Итак, у КВМ с большими скоростями впереди возмущенной зоны наблюдается разрыв концентрации, который может быть связан с формированием ударной волны в короне. Отметим, что в рассмотренных шести событиях КВМ со скоростями >800 км/с на близких расстояниях от Солнца скорость разрыва превышала скорость FS, но постепенно их скорости становились сравнимыми. Для этих событий был определен

Рис. 2. Размер разрыва на фронте различных КВМ в зависимости от расстояния.

характерный размер δ_F разрыва на разных расстояниях от центра Солнца. Полученные зависимости приведены на рис. 2. На этот же рисунок нанесен график изменения длины свободного пробега относительно протон-протонных соударений, рассчитанный для двух температур 10⁶ К и 2·10⁶ К. Этот график ограничен расстояниями до ~6R₀, для которых измерен профиль изменения температуры. При измерениях ширины ударного разрыва б_F следует учитывать, что реальный размер профиля концентрации в короне может быть меньше наблюдаемого профиля яркости из-за усреднения вдоль луча зрения в оптически тонкой короне. Однако в данном случае, если фронт ударной волны является квазисферической поверхностью или оболочкой, эффект усреднения не должен приводить к ошибкам более, чем несколько десятков процентов и, по сути, мы разрешаем близкий реальному размер неоднородности плотности во

фронте ударной волны. С учетом разброса измеряемых параметров плазмы из рис. 2 можно сделать вывод о том, что $\delta_F \sim \lambda_{pp}$, а значит механизм диссипации в ударной волне столкновительным.

СПИСОК ЛИТЕРАТУРЫ

1. Sheeley N.R., Jr., Howard R.A., Koomen M.J., et al. Coronal mass ejections and interplanetary shocks // JGR. 1985. V. 90. P. 163.

2. Cliver E.W., Webb D.F., Howard R.A. On the origin solar metric type II bursts // Solar Phys. 1999. V. 187. P. 89.

3. Mancuso S., Raymond J.C., Kohl J., et al. UVCS/SOHO observations of a CME-driven shock: Consequences on ion heating mechanisms behind a coronal shock // A&A. 2002. V. 383. P. 267.

4. Sheeley N.R., Jr., Hakala W.N., Wang Y.-M. Detection of coronal mass ejection associated shock waves in the outer corona // JGR. 2000. V. 105. P. 5081.

5. Vourlidas A., Wu S.T., Wang A.H., et al. Direct detection of a coronal mass ejection-associated shock in large angle and spectrometric coronagraph experiment white-light images // ApJ. 2003. V. 598, N 2. P. 1392.

6. Sime D.G., Hundhausen A.J. The coronal mass ejection of July 6, 1980 – a candidate for interpretation as a coronal shock wave // JGR. 1987. V. 92. P. 1049.

7. Еселевич М.В., Еселевич В.Г. Первые экспериментальные исследования возмущенной зоны впереди коронального выброса массы // Сборник тезисов докладов конференции «Многоволновые исследования Солнца и современные проблемы солнечной активности» 28 сентября – 2 октября 2006 г., САО РАН, п. Нижний Архыз.

8. Brueckner G.E. et al. The large angle spectroscopic coronagraph (LASCO) // Solar Phys. 1995. V. 162. P. 357.

9. Jackson B.V., Hildner E. Forerunners: outer rims of solar coronal transients // Solar Phys. 1978. V. 60. P. 155.

Институт солнечно-земной физики СО РАН, Иркутск