УДК 523.98:533.951

# ВЛИЯНИЕ УГЛОВОГО ВРАЩЕНИЯ НА ПОДЪЕМ ТОНКОЙ МАГНИТНОЙ ТРУБКИ ИЗ ЗОНЫ ДИНАМО

## Д.В. Романов, К.В. Романов, Е.В. Шалагина, Н.М. Нычкова

## EMERGENCE OF MARNETIC FIELD IN THE PRESENCE OF ANGULAR ROTATION

### D.V. Romanov, K.V. Romanov, E.V. Shalagina, N.M. Nychkova

В работе исследована устойчивость изолированной тонкой магнитной трубки в конвективной зоне Солнца. Показано, что вращение трубки способно стабилизировать и неустойчивость соскальзывания к полюсу, и неустойчивость медленной и альфвеновской волн для умеренно сильных полей.

In this paper a linear stability of thin toroidal magnetic flux tube is studied. It is shown that initial angular momentum is able to stabilize both slipping instability and slow/Alfven wave instabilities for moderate strength of magnetic field within solar convective zone.

#### Введение

Данная работа посвящена исследованию устойчивости сильного магнитного поля в конвективной зоне Солнца. Магнитное поле имеет напряженность порядка  $10^5$  Гс ( $10^3$  Гс на уровне фотосферы) и собрано в тонкие трубки. Полноценное рассмотрение задачи об эволюции подобного объекта все еще находится за пределами возможностей как теоретических, так и численных методов, но исключение из рассмотрения процессов в теле трубки позволяет свести уровень сложности задачи к необходимому минимуму (модель предполагает, что процессы установления равновесия поперек трубки имеют ничтожно малый временной масштаб по сравнению с временем эволюции всего магнитного потока) [1-3]. Рассматриваемое приближение сохраняет физику обратного влияния магнитного поля на движение плазмы и не предполагает полную пассивность вмороженного поля, что позволяет использовать тонкую магнитную трубку как пробный элемент при решении задач о переносе сильного магнитного поля. Ранее было показано, что в рамках такой модели возможно описание альфвеновской и медленной магнитозвуковых волн и получены условия их устойчивости для находящейся в механическом равновесии горизонтальной трубки [1, 2] (отдельно стоит отметить неустойчивость соскальзывания магнитного кольца к полюсу под действием силы натяжения [2, 3]).

Целью настоящей работы является исследование линейной устойчивости магнитного поля в конвективной зоне с учетом начального вращения кольца для определения влияния собственного углового момента трубки на устойчивость поля (момент может быть приобретен как при создании, так и вследствие взаимодействия со средой благодаря дифференциальному вращению). Как было показано, это практически единственный кандидат на стабилизацию неустойчивости соскальзывания [2, 3].

### Модель тонкой магнитной трубки

В рамках модели задача сведена к одномерной: все параметры задаются вдоль оси трубки  $\vec{r}(s)$  (s – массовая переменная [1]). Обозначив плотность плазмы  $\rho$ , площадь поперечного сечения  $\sigma$ , напряженность магнитного поля H, давление p и вектор касательной  $\vec{\ell}$ , выпишем систему уравнений (индекс ехt отвечает внешней среде) [1]:

$$\begin{cases} \frac{\partial \vec{r}}{\partial t} = \vec{v}, & \rho \frac{\partial \vec{v}}{\partial t} = \frac{H \sigma \rho}{4\pi} \frac{\partial (H \dot{\ell})}{\partial s} + (\rho - \rho_{\text{ext}}(\vec{r})) \vec{g}(\vec{r}), \\ p + \frac{H^2}{8\pi} = p_{\text{ext}}(\vec{r}), & \frac{\partial}{\partial t} \left(\frac{p}{\rho^{\gamma}}\right) = 0, \\ H \sigma = const, & \vec{\ell} = \rho \sigma \frac{\partial \vec{r}}{\partial s}, \ (\vec{\ell}, \vec{\ell}) = 1. \end{cases}$$
(1)

Для замыкания системы использована модель [4] без учета вращения Солнца:  $\rho_{\text{ext}}(\vec{r}) = \rho_{\text{ext}}(r)$ ,  $p_{\text{ext}}(\vec{r}) = p_{\text{ext}}(r)$  и  $\vec{g}(\vec{r}) = g(r)\vec{r}/r$ .

#### Линеаризованная система уравнений

При исследовании устойчивости удобно перейти в сферическую систему координат с центром в центре Солнца и осью, направленной по оси вращения. Единичные орты системы координат следующие:

$$\begin{cases} \vec{e}_r = (\cos\theta\cos\phi, \cos\theta\sin\phi, \sin\theta), \\ \vec{e}_{\phi} = (-\sin\phi, \cos\phi, 0), \\ \vec{e}_{\theta} = (-\sin\theta\cos\phi, -\sin\theta\sin\phi, \cos\theta). \end{cases}$$
(2)

Предположим, что в начальный момент времени кольцо находится в равновесии и вращается с угловой скоростью Ω. Условие механического равновесия запишется как

$$\begin{pmatrix} \rho \Omega^2 r \cos \theta - \frac{H^2}{4\pi r \cos \theta} \end{pmatrix} \times \\ \times (\vec{e}_r \cos \theta - \vec{e}_\theta \sin \theta) + (\rho - \rho_{\text{ext}}(r))g(r)\vec{e}_r = 0$$
(3)

и имеет два решения для случаев  $\Omega = 0$  и  $\Omega \neq 0$ .



*Рис. 1.* Действительная (внизу) и мнимая (вверху, с обратным знаком) части круговой частоты  $[c^{-1}]$  для осесимметричной моды колебаний в отсутствие вращения (слева) и для  $\Omega$ =5.0·10<sup>-5</sup>c<sup>-1</sup> (справа). Параметр  $\eta = H^2/8\pi p_{ext}$ .

Линеаризированная система (возмущения обозначены префиксом б) имеет вид:

$$\begin{cases} \frac{\partial \delta \vec{v}}{\partial t} = \frac{\delta \rho}{\rho} \left( \frac{H\sigma}{4\pi} \frac{\partial (H\vec{\ell})}{\partial s} - \frac{\partial \vec{v}}{\partial t} \right) + \frac{H\sigma}{4\pi} \frac{\partial (\delta H\vec{\ell} + H\delta\vec{\ell})}{\partial s} + \\ + \frac{(\delta \rho - \rho'_{ext}(r)\delta r)}{\rho} \vec{g}(r) + \left( 1 - \frac{\rho_{ext}(r)}{\rho} \right) \delta \vec{g}, \\ \frac{\partial \delta \vec{r}}{\partial t} = \delta \vec{v}, \qquad \delta p + \frac{H}{4\pi} \delta H = \rho_{ext}(r)g(r)\delta r, \\ \sigma \delta H + H\delta \sigma = 0, \qquad \delta p = c_s^2 \delta \rho = \frac{\gamma p}{\rho} \delta \rho, \\ (\delta \vec{\ell}, \vec{\ell}) = 0, \qquad \delta \vec{\ell} = \left( \frac{\delta \rho}{\rho} + \frac{\delta \sigma}{\sigma} \right) \vec{\ell} + \rho \sigma \frac{\partial \delta \vec{r}}{\partial s}. \end{cases}$$

Обозначив вектор смещения как  $\delta \vec{r} = \delta \vec{r}_r + r \delta \phi \vec{e}_{\phi} + r \delta \theta \vec{e}_{\theta}$ , всю систему уравнений можно свести к трем волновым уравнениям. При взятии производных следует учитывать криволинейность системы координат ( $\partial_{\phi} \vec{e}_r = \cos \theta \vec{e}_{\phi}$ , ...) и взять все производные от векторных величин до подстановки возмущений в виде фурье-гармоник. Итоговая система алгебраических уравнений на комплексные амплитуды записывается как

$$\begin{bmatrix} -\omega^{2} - \Omega^{2} \cos^{2} \theta & 2i\omega\Omega\cos\theta & \Omega^{2}\sin\theta\cos\theta \\ -2i\omega\Omega\cos\theta & -\omega^{2} - \Omega^{2} & 2i\omega\Omega\sin\theta \\ \Omega^{2}\sin\theta\cos\theta & -2i\omega\Omega\sin\theta & -\omega^{2} - \Omega^{2}\sin^{2}\theta \end{bmatrix} \begin{bmatrix} \delta r \\ r\delta \varphi \\ r\delta \theta \end{bmatrix} = \begin{bmatrix} M^{(H)} + M^{(g)} \end{bmatrix} \begin{bmatrix} \delta r \\ r\delta \varphi \\ r\delta \theta \end{bmatrix},$$
(4)

где матрица  $M^{(H)}$  описывает влияние натяжения поля, а  $M^{(g)}$  – стратификации среды [1] (решения ищутся в виде фурье-мод  $\delta f(s, t) = f_0 \exp(ims/M - i\omega t)$ , где M – масса кольца).

#### Устойчивость кольца в плоскости экватора

Для кольца, расположенного в плоскости экватора, угол  $\Omega = 0$  и все силы лежат в одной плоскости, что освобождает один начальный параметр кольца. Система (4) имеет вид:

$$\begin{bmatrix} -\omega^{2} - \Omega^{2} & 2i\omega\Omega & 0\\ -2i\omega\Omega & -\omega^{2} - \Omega^{2} & 0\\ 0 & 0 & -\omega^{2} \end{bmatrix} \begin{bmatrix} \delta r\\ r\delta \phi\\ r\delta \theta \end{bmatrix} = \begin{bmatrix} A & -imB & 0\\ imB & C & 0\\ 0 & 0 & D \end{bmatrix} \begin{bmatrix} \delta r\\ r\delta \phi\\ r\delta \phi \end{bmatrix},$$
(5)



Рис. 2. Инкремент неустойчивости моды *m* = 1 медленной волны. Обозначения и параметры, как на рис. 1.

где

$$\begin{cases} A = -\frac{m^2 v_a^2}{r^2} - \frac{v_{sl}^2}{r^2} \left( 1 + \frac{2rg\rho_{ext}}{\rho c_s^2} \right) + \frac{g^2 \rho_{ext}^2}{\rho^2 (c_s^2 + v_a^2)} + \\ + \left( 1 - \frac{\rho_{ext}}{\rho} \right) g' - \frac{g\rho_{ext}'}{\rho}, \\ C = -\frac{m^2 v_{sl}^2}{r^2} - \Omega^2, \quad D = \left( \frac{v_a^2}{r^2} - \Omega^2 \right) - \frac{m^2 v_a^2}{r^2}, \\ B = \frac{v_a^2 + v_{sl}^2}{r^2} + \frac{g}{r} \frac{\rho_{ext}}{\rho} \frac{v_{sl}^2}{c^2}. \end{cases}$$

Уравнение на бф дает условие стабилизации соскальзывания:

$$\Omega^2 r^2 \ge v_a^2. \tag{6}$$

Условием существования нетривиальных решений б*r* и бф является дисперсионное уравнение

$$\omega^{4} + (C + A - 2\Omega^{2})\omega^{2} - 4m\Omega B\omega + + (\Omega^{4} + (C + A)\Omega^{2} + AC - m^{2}B^{2}) = 0.$$
(7)

В отличие от случая без вращения [1], это уравнение уже не является биквадратным. Теперь даже осесимметричная мода возмущений (m = 0) содержит ф-компоненту (для обеспечения сохранения углового момента). Особое внимание следует обратить на коэффициент А – в отсутствие вращения он прямо определяет конвективную устойчивость элемента среды (квадрат частоты Брента-Вяйсяля) [5]. Коэффициент С добавляет стабилизирующее слагаемое  $-\Omega^2$ . На рис. 1 показана зависимость  $\omega(H, r)$ от напряженности поля и радиуса кольца для осесимметричной моды. Ранее было показано [5], что нулевая мода дестабилизируется магнитным полем в нижней половине конвективной зоны - видно, что теперь наличие вращения стабилизирует нулевую моду для достаточно слабых полей.

В отсутствие вращения для неосесимметричных мод первой становится неустойчивой медленная волна, развитие неустойчивости которой приводит к деформации кольца. Вращение способно стабилизировать и эту волну, как показано на рис. 2.

### Заключение

В данной работе показано, что вращение кольца и соответствующее действие инерциальных сил яв-

ляется важным фактором, который может стабилизировать неустойчивость для достаточно умеренных магнитных полей. Условие стабилизации неустойчивости соскальзывания (6) налагает существенное ограничение снизу на начальную скорость – если скорость движения замагниченной плазмы относительно вещества конвективной зоны заметно больше альфвеновской, возможно возбуждение неустойчивости Кельвина–Гельмгольца, невозможной в рамках используемого приближения (для ее анализа потребуется рассмотреть магнитный поток в рамках МГД).

Также следует отметить, что используемая модель конвективной зоны [4] построена без учета дифференциального вращения и для полностью адекватного анализа ее следует доработать. Влияние вращения прежде всего скажется на потере осесимметричности распределения параметров и появлении нового слагаемого в условии гидростатического равновесия. Построение подобной модели выходит далеко за рамки настоящего исследования, хотя и приводит к тем же ключевым нерешенным вопросам физики активного Солнца – задачам о транспорте углового момента в конвективной зоне, природе зон тахоклина и роли магнитного поля в данных процессах [6].

# СПИСОК ЛИТЕРАТУРЫ

1. Романов Д.В., Романов К.В. Численное моделирование динамических процессов в солнечной атмосфере // Выч. технологии. 2003. Т. 8, № 2. С. 74–95.

2. Ferriz-Mas A., Schussler M. Waves and instabilities of a toroidal magnetic flux tube in a rotating star // Astrophys. J. 1994. V. 433. P. 852–866.

3. Van Ballegooijen A.A. On the stability of toroidal flux tubes in differentially rotating stars // Astron. Astrophys. 1983. V. 118. P. 275–284.

4. Christensen-Dalsgaard J., et al. The current state of solar modeling // Science. 1996. V. 272. P. 1286.

5. Alekseenko S.V., Dudnikova G.I., Romanov V.A., et al. Magnetic field instabilities in the solar convective zone // Rus. J. Eng. Thermophys. 2000. V. 10. P. 243–262.

6. Gilman P.A. Fluid dynamics and MHD of the solar convection zone and tachocline: current understanding and unsolved problems // Solar Phys. 2000. V. 192. P. 27–48.

Красноярский филиал Иркутского государственного университета путей сообщения, Красноярск, Россия, dromanov@phys.ualberta.ca