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ФОРМУЛА БРЕЙТ–ВИГНЕРА ДЛЯ ФЕРМИОНОВ 

М.О. Гончар, А.Е. Калошин, В.П. Ломов 

BREIT–WIGNER FORMULA FOR FERMIONS 

M.O. Gonchar, A.E. Kaloshin and V.P. Lomov 
 
Мы обсуждаем процедуру получения теоретико-полевого аналога формулы Брейт–Вигнера для фермионов. 
 
We discuss the procedure of obtaining the quantum field theory analog of Breit–Wigner formula for fermions. 
 
 
1. Introduction 
The Breit–Wigner formula describing the processes 

of production and decay of unstable particles is widely 
used in hadron and nuclear physics. The original for-
mula [1], which was applied to scattering of slow neu-
trons, is a non-relativistic one and, besides, the parame-
ters (mass and width) are supposed to be energy-
independent. It is clear that this approximation works 
well only for very narrow states; so description of real 
hadron resonances (especially with improving the ex-
perimental accuracy) needs more adequate methods 
based on quantum field theory (QFT). In principal it is a 
well-known procedure (see, e.g. [2]), though different 
techniques can be used. 

 
2. Boson resonance in QFT 
Let us consider first a more evident case of the 

boson resonance. The unstable particle is usually asso-
ciated with the Breit-Wigner formula for an amplitude 

2

1
( ) .a b

R R R

M a R b g g
M s i M

→ → = ⋅ ⋅
− − Γ

 (1) 

Here the factor 2( ) 1 ( )R R RG s M s i M= − − Γ  repre-
sents relativistic propagator of unstable particle. 

The similar formula may be obtained in framework 
of quantum field theory by means of Dyson summation 
of the self-energy insertions into propagator. Equiva-
lently, we should solve the Dyson–Schwinger equation 
for full non-renormalized propagator 

0 0 .G G GJG= +  (2) 

Here 2 1

0 ( )G M s −= −  and G(s) are free and full 
propagators respectively, J(s) is the self-energy contri-
bution. 

The equation (2) may be rewritten in terms of in-
verse propagators S(s) = G–1(s) 1 

2

0 ( ).S S J M s J s= − = − −  (3) 

If one use the on-mass-shell scheme of renormaliza-
tion, then M in full propagator is the renormalized mass 

                                                 
1 If we consider the self-energy J(s) as a known function (i.e. 
neglecting the vertex dressing) then we come to the so called 
rainbow approximation, see e.g. review [3Ошибка! Источник 
ссылки не найден.]. This approximation is sufficient to respect 
the analytical properties and unitarity and is widely used in 
resonance physics (sometimes as some post-rainbow 
approximation). 

and one should subtract the self-energy contribution 
twice at this point 

2 2 2 2[ ( ) Re ( ) Re ( )( )].rS M s J s J M J M s M′= − − − − −
(4) 

After this we have similar to (1) formula but with 
“running” mass and width. From QFT point of view the 
Breit-Wigner formula is rather rough approach, when 
we neglect the energy dependence in mass and width 
(i.e. the energy dependence in loop contribution J(s)) 
and which may be adequate only for narrow resonance 

0RΓ →  far from threshold. 
 
3. Fermion resonance in QFT 
The fermion propagator dressing looks rather similar 

0

1 1
,

ˆ ˆ ( )
G G

p M p M p
= ⇒ =

− − − Σ
  

where 2 2ˆ( ) ( ) ( )p A p pB pΣ = +  is a self-energy contri-
bution. 

To renormalize the obtained expression it is conven-
ient to work with the inverse propagator S(p) = G–1(p). 
Usually the renormalization condition is formulated as 
the decomposition of inverse propagator in terms of 
p̂ M−  

ˆ ˆ( ) ( )S p p M o p M= − + −  at ˆ .p M→  (5) 

We use convenient basis consisting off-shell projec-
tion operators Λ±  

ˆ1
1 ,

2

p

E
±Λ = ± 

 
 

2 ,E p=  (6) 

which simplifies significantly all the γ -matrix opera-
tions and makes more evident the renormalization con-
dition. To illustrate let us write down the self-energy 
contribution in this basis.  

( ) ( )

2 2

2 2 2 2

ˆ( ) ( ) ( )

( ) ( ) ( ) ( ) .

p A p pB p

A E EB E A E EB E+ −

Σ = + =

= Λ + + Λ −
(7) 

One can see that coefficients ±Σ  in this basis are 
bound by simple substitution ( ) ( )E E− +Σ = Σ −  and co-
efficients of the full propagator have this property also. 
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The reversing of propagator is very easy due to sim-
ple multiplicative properties of the basis. If the inverse 
propagator has a decomposition  

( ) ,S p S S+ + − −= Λ + Λ  (8) 

with symmetry property ( ) ( )S E S E− += − , then the 
propagator ( )G p  has form 

1 1
( )

( ) ( )
G p

S E S E
+ −

+ −
= Λ + Λ . (9) 

So, the explicit form of the full un-renormalized 
propagator is evident 

2 2

2 2

1
( )

( ( ) ( ))

1

( ( ) ( ))
.

G p
E M A E EB E

E M A E EB E

+

−

= Λ +
− − +

+Λ
− − − −

 (10) 

Thus, using the Λ-basis we have separated the γ-
matrix structure and should renormalize the scalar coef-
ficients dependent on E. More precisely, we should re-
normalize only the G+ component, while the other coef-
ficient G– will be obtained after that by substitution 
E E→ − . 

If one say about bound state located below the 
threshold, the renormalization leads to the following 
condition for the self-energy contribution:  

( )S E M o E M+ = − + −  at E M→   

One can convince yourself that the final expression 
obtained with using the projection operator basis coin-
cides with the standard one presented in any textbook. 

If we deal with a resonance located higher the 
threshold, the renormalization condition takes the form 

2
( ) iS E M o E M+ = − + − + Γ  at .E M→  (11) 

Note that real part of (11) is some requirement on 
the subtraction constants of self-energy functions 

2 2( ), ( )A p B p  
2 2

2 2 2 2

Re ( ) Re ( ) 0,

2 Re ( ) Re ( ) 2 Re ( ) 0,

A M M B M

M A M B M M B M

+ =

′ ′+ + =
(12) 

whereas the imaginary part of the condition (11) simply 
relates the coupling constant with width2. 

2 2Im ( ) Im ( )
2

.A M B M
Γ

+ = −  (13) 

Eq. (12) fixes the loop subtraction constants and af-
ter that functions 2 2( ), ( )A E B E  are defined completely. 
The inverse propagator may be written in form similar 
to Breit-Wigner formula (1) but with “running” mass 
and width  

                                                 
2 It is known that the normalization on the pole in complex 
energy plane is preferable from theoretical point of view 
[4Ошибка! Источник ссылки не найден., 5Ошибка! 
Источник ссылки не найден.] but for our purpose the more 
crude recipe (11) is sufficient. 

2
( ) ( ).iS E M E E+ = − + Γ  (14) 

Another component is obtained by the substitution 
E E→ −  

2
( ) ( ) ( ).iS E E M E E− = − − − + Γ −  (15) 

If one look at the self-energy contribution, one can see 
that there are the symmetric and antisymmetric contribu-
tions under the E E→ −  exchange. Therefore the running 
mass and width also may be divided into two parts 

( ) ( ) ( )S AM E M E M E= + , ( ) ( ) ( )S AE E EΓ = Γ + Γ (16) 

and components of renormalized propagator take the 
form 

( )

( )

( ) ( ) ( ) ( ) ,
2

( ) ( ) ( ) ( ) .
2

S A S A

S A S A

i
S E M E M E E E

i
S E M E M E E E

+

−

= − − + Γ + Γ

= − − + + Γ − Γ

 (17) 
Let us stress that these components are normalized 

at different points  

2
iS E M+ ≈ − + Γ  at E M→   

2
iS E M+ ≈ − − + Γ  at E M→ −    

Returning from projection operators to ˆ ,p I  basis, 
we obtain the following formula for the resonance 
propagator 

2

2

1
( ) ( ) ( )

( ) ( )ˆ 1 ,

S Si

A Ai

G p M E E

M E Ep
E

=
∆
 − Γ +

 − Γ
+ −  
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 (19) 

where 

( )
( )

22

2

2

2

( ) ( ) ( )

( ) ( )

A Ai

S Si

E E M E E

M E E

∆ = − + Γ

− Γ

−

−
. (20) 

Let us compare it with boson Breit–Wigner formula 
for the inverse propagator S(p2) written in a similar form 

2

2 2

2 2 2

( ) ( ) ( )

( ) [ ( )][ ( )].i i i

S s s M s iM s

E M E M E M

= − + Γ ≈

≈ − − Γ = − − Γ + − Γ
 

(21) 
One can see that the fermion denominator in (20) 

turns into this expression in absence of antisymmetric 
contributions 0A AM = Γ = . 

Let us compare also the interference pictures near 
the positive energy pole in elastic amplitude. 

 
Boson case  



 

 

2

2

2

2 2

1 1

2
.

i i

g
T

M s iM

g

M E M E M

= =
− − Γ

= − +
− + Γ − − + Γ

 
 
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 (22) 

Fermion case 
For definiteness let us consider the process 

(1/ 2 )N R N+π → → π  and look at the CMS helicity 

amplitude M ++  at E M→  

 

Fig. 1. “Running” mass M(E) and symmetric and antisymmetric masses MS(E), MA(E). 

 
Fig. 2. “Running” width Г(Е) and symmetric and antisymmetric widths ГS(E), ГA(E). 
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 (23) 
where p0 is the nucleon CM energy. 

One can see that in contrast to boson case the back-
ground contribution in vicinity of E = M is not ex-
pressed in terms of M and Г. The observed specific in 
fermion Breit–Wigner formula (presence of antisym-
metric in Е terms MA(E), ГА(Е)) is generated by p̂  con-
tribution in self-energy 2 2ˆ( ) ( ) ( )p A p pB pΣ = + . As a 
result instead of two parameters (М and Г) the fermion 
Breit–Wigner formula is described by four parameters. 
But this difference may be essential only for broad 
resonance since in the limit 0Γ →  the influence of 
background is negligible. 

Let us illustrate the Breit–Wigner formula for 
fermions by considering ∆ -resonance. The full spin 3/2 
propagator has form [6] 

3 / 2

1

3 / 2

1

1

( )

1

( )
.

G P
E M J E

P
E M J E

+

µν µν

−

µν

= Λ +
− −

+Λ
− − − −

  

Fig. 1 shows the “running” mass М(Е), symmetric 
and antisymmetric masses MS(E), MA(E) respectively. 
Fig. 2 shows the “running” width Г(Е), symmetric and 
antisymmetric widths ГS(E), ГA(E) respectively. 

 

4. Conclusions 
We have discussed in detail obtaining the Breit–

Wigner-like formula in quantum field theory for 
fermion resonance. It has own specifics as compared 
with boson resonance case where even the resonance 
denominator does not coincide with its boson analog. 
We have found that fermion resonance is not described 
by two parameters, i.e. mass and width but needs at 
least four parameters. Therefore using some simplified 
formulae for experiment description should be made 
carefully. 
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