УДК 537.591

СПЕКТР ПЕРВИЧНЫХ КОСМИЧЕСКИХ ЛУЧЕЙ И ПОТОКИ АДРОНОВ ВЫСОКИХ ЭНЕРГИЙ В АТМОСФЕРЕ ЗЕМЛИ

¹А.А. Кочанов, ¹С.И. Синеговский, ²Т.С. Синеговская

PRIMARY COSMIC RAY SPECTRUM AND HIGH ENERGY HADRON FLUXES IN THE EARTH ATMOSPHERE

¹A A. Kochanov, ¹S.I. Sinegovsky, ²T.S Sinegovskaya

В работе на основе Z-факторного метода решения уравнений ядерного каскада рассчитаны потоки нуклонов и мезонов на разных уровнях атмосферы. Расчет выполнен для трех моделей спектра и состава первичных космических лучей с использованием аппроксимаций Кимеля–Мохова сечений рождения адронов в адрон-ядерных взаимодействиях. Рассчитанные энергетические спектры и зарядовые отношения адронов хорошо согласуются с экспериментальными данными.

In this work, the atmosphere hadron fluxes are calculated with the Z-factor method of solution of nuclear cascade equations. The calculation is performed with Kimel–Mokhov approximations of secondary particle production cross-sections in hadronnuclear interactions for three models of primary cosmic-ray spectrum and composition. The calculated hadron energy spectra and charge ratios agree fairly with experimental data.

Введение

Расчет адронной компоненты вторичных космических лучей (КЛ), являясь важным этапом исследования потоков атмосферных мюонов и нейтрино, представляет и самостоятельный интерес. Сравнение рассчитанных спектров вторичных нуклонов и мезонов с экспериментальными данными может дать информацию как о сечениях адронных взаимодействий при высоких энергиях, так и о спектре и составе первичных космических лучей. В данной работе на основе Z-факторного метода [1, 2] решения уравнений ядерного каскада рассчитаны потоки адронов (нуклонов и мезонов) в широком диапазоне энергий (>10 ГэВ) для различных глубин атмосферы (5-1030 г/см²). Расчет выполнен для трех моделей спектра и состава первичных КЛ (ПКЛ) [3-5] с использованием аппроксимаций дифференциальных сечений рождения вторичных частиц в адронядерных взаимодействиях из работ [6, 7]. Сравнение рассчитанных энергетических спектров и зарядовых отношений адронов с экспериментальными данными, полученными на разных экспериментальных установках, показало в целом хорошее согласие расчета с измерениями на разных уровнях атмосферы.

Модели спектра первичных космических лучей

Для расчета спектров адронов на разных глубинах атмосферы мы используем три параметризации спектра и состава ПКЛ. Приведем здесь только одну из недавних параметризаций – Гайссера-Хонды [3], в которой космические лучи разделены на пять групп ядер с A=H, He, CNO, Mg-Si, Fe:

$$\Phi_{A}(E_{k}) = K_{A} \times \left(E_{k} + b_{A} \exp\left[-c_{A}\sqrt{E_{k}}\right]\right)^{-\alpha_{A}} \left[M^{-2}c^{-1}cp^{-1}\Gamma \Im B^{-1}\right].$$
(1)

Здесь $\Phi_A(E_k)$ – дифференциальный энергетический спектр нуклонов соответствующий определенной группе ядер *A*; E_k – кинетическая энергия, приходящаяся на один нуклон ядра. Параметры формулы представлены в таблице.

Решение системы уравнений переноса мезонов

Ограничимся здесь упоминанием лишь мезонной части адронного каскада в атмосфере, поскольку нуклонная компонента в рамках данного подхода была исследована в работах [1, 2]. Напомним основные предположения используемой модели каскада:

1) приближение «прямо-вперед» рассеяния и генерации частиц;

 пренебрежение потерями энергии на электромагнитные взаимодействия и влиянием геомагнитного поля;

3) пренебрежение малым вкладом процессов рождения $N\overline{N}$ - пар в мезон-ядерных соударениях (что позволяет отщепить нуклонную часть каскада от пионной и каонной);

4) учет регенерации и неупругой перезарядки пионов.

Источниками пионов в атмосфере являются реакции рождения пионов во взаимодействиях нуклонов и пионов с ядрами атомов воздуха:

$$i + A = \pi^{\pm} + X$$
 $(i = p, n, \pi^{\pm}, K^{\pm}, K^{0}, K^{0})$

и распады каонов

$$K = K^{\pm}, K_L^0, K_S^0.$$

Функции генерации, отвечающие этим источникам, обозначим как $G_{i\pi^{\pm}}^{int}(E, h)$ и $G_{K\pi^{\pm}}^{dec}(E, h)$.

Тогда система уравнений переноса пионов в атмосфере имеет вид:

$$\frac{\partial \pi^{\pm}(E,h,\theta)}{\partial h} = -\frac{\pi^{\pm}(E,h,\theta)}{\lambda_{\pi}(E)} - \frac{m_{\pi}\pi^{\pm}(E,h,\theta)}{p\tau_{\pi}\rho(h,\theta)} + \sum_{i} G_{i\pi^{\pm}}^{int}(E,h) + \sum_{K} G_{K\pi^{\pm}}^{dec}(E,h),$$
(3)

где $\pi^{\pm}(E, h, \theta)$ – поток (спектр) заряженных пионов с энергией вблизи *E* на глубине *h*, распространяющихся под углом θ ; λ_{π} – средний пробег пиона до неупругого взаимодействия в воздухе; m_{π} , τ_{π} , *p* – его масса, время жизни и импульс соответственно;

Рис. 1. Дифференциальный энергетический спектр протонов для разных глубин атмосферы.

Рис. 2. Спектр нейтронов на уровне моря 1030 г/см².

 $\rho(h, \theta)$ – плотность воздуха на глубине *h* вдоль направления θ . Решение уравнений пионного каскада приведено в [8].

Уравнения генерации и переноса каонов $K^{\pm}, K^{0}, \overline{K^{0}}$ имеют подобный вид:

$$\frac{\partial K(E, h, \theta)}{\partial h} = -\frac{K(E, h, \theta)}{\lambda_{K}(E)} - \frac{m_{K}K(E, h, \theta)}{p\tau_{K}\rho(h, \theta)} +$$

$$+\sum_{i} G_{NK}(E,h) + \sum_{K} G_{\pi K}(E,h) + \dots + \frac{1}{\lambda_{K}(E)} \sum_{K'} \frac{1}{\sigma_{KA}^{in}} \frac{d\sigma_{K'K}(E,E_{0})}{dE} K'(E_{0},h,\theta) dE_{0}.$$
(4)

Пренебрежение вкладом процессов рождения пионов в каон-ядерных столкновениях позволяет

Рис. 3. Дифференциальные энергетические спектры адронов на уровне гор 820 г/см² и на уровне моря 1030 г/см².

Рис. 4. Масштабированные спектры атмосферных адронов и данные двух экспериментов (EAS-TOP и KASCADE).

Пренебрежение вкладом процессов рождения пионов в каон-ядерных столкновениях позволяет отщепить уравнения (4) от пионной части каскада и затем решить их аналогично пионному каскаду.

Результаты расчета

На рис. 1 представлен спектр протонов, рассчитанный с параметризацией ПКЛ [3] для одиннадцати глубин атмосферы (начиная от границы атмосферы 5.5 г/см² и заканчивая уровнем гор ~840 г/см²), в сравнении с недавними измерениями спектрометра CAPRICE98 [13] в области энергий от 5 до 100 ГэВ. Границы серых областей на рис. 1. соответствуют границам указанных интервалов глубины атмосферы, на которых велись измерения, а кривые – средним глубинам наблюдения.

Рис. 5. Отношение потока пионов к потоку всех нуклонов на уровне моря.

Рис. 6. Зарядовое отношение потоков адронов на уровне моря.

На рис. 2 приведено сравнение рассчитанного спектра нейтронов для уровня моря вплоть до энергий 10 ТэВ для трех параметризаций ПКЛ с результатами измерений из работы [9].

На рис. 3 показан расчет спектров адронов для двух глубин атмосферы (820 и 1030 г/см²) и приведены данные измерений на установках KASCADE [9], EAS-TOP [10] и данные старых экспериментов, взятые из работы [9]. Расчет выполнен для трех параметризаций спектра и состава ПКЛ [3–5]. При $E \sim 1$ ТэВ на рис. 4 заметно укручение и занижение спектра измеренных адронов на калориметре KASCADE [9] по сравнению с настоящим расчетом, связанное, по-видимому, с методикой отбора одиночных адронных событий.

Авторы работ [11, 12] использовали однослойные калориметры, что затрудняло реконструкцию ливней и привело к большой неопределенности в энергии. Это заметно сказалось на результатах измерений [11] – с ростом энергии происходит систематическое завышение потока адронов (рис. 3). В целом наблюдается хорошее согласие настоящего расчета с экспериментом, однако отметим, что расчетные кривые идут несколько ниже измерений на установке EAS-TOP [10]. Причина такого расхождения пока неясна.

Вычисленное отношение заряженных пионов к потоку нуклонов на уровне моря в интервале энергий 5 ГэВ–1 ТэВ (рис. 5) и отношение числа нейтронов к числу заряженных частиц (протонов и пионов) (рис. 6) могут служить тестом расчета пионнуклонного каскада. Экспериментальные данные и расчеты других авторов взяты из работы [9]. Таблица

ного спектра КЛ				
Ядерная группа (А)	α	К	b	C
H (1)	2.74±0.01	14900±600	2.15	0.21
He (High) (4)	2.64±0.01	600±30	1.25	0.14
CNO (14)	2.60 ± 0.07	33.2±5	0.97	0.01
Mg-Si (25)	2.79 ± 0.08	34.2±6	2.14	0.01
Fe (56)	2.68 ± 0.01	4.45±0.50	3.07	0.41

Параметры формулы (1) дифференциального первичюго спектра КЛ

Хорошо видно, что расчет с первичным спектром [4] дает более высокий поток пионов в области $E \sim 1$ ТэВ. Характерный изгиб кривых в окрестности критической энергии пиона $E_{\pi}^{cr} = 115$ ГэВ связан с уменьшением вероятности распада π -мезонов в атмосфере с ростом энергии.

Заключение

Проведенный расчет потоков адронов в атмосфере Земли показал неплохое согласие с экспериментом и продемонстрировал эффективность используемого при расчете метода [1, 2]. Параметри-Никольского-Стаменова-Ушева зания спектра первичных космических лучей дает более высокие потоки пионов, что, в свою очередь, приведет к завышению потока мюонов на уровне моря. Отметим, что сравнение расчета с последними прямыми измерениями адронов для разных глубин атмосферы не позволяет сделать достаточно уверенный выбор из двух аппроксимаций первичного спектра - Гайссера-Хонды [3] (вариант с высоким содержанием гелия) и спектра Ерлыкина-Крутиковой-Шабельского [5]. Очевидно, главные тесты спектров ПКЛ обеспечат прежде всего мюонные эксперименты в той области высоких энергий, когда еще можно будет пренебречь вкладом рождения и распада очарованных частиц.

А.А. Кочанов благодарит Иркутский государственный университет за дополнительную поддержку работы грантом N 111-02-000/05.

СПИСОК ЛИТЕРАТУРЫ

1. Наумов В.А. Синеговская Т.С. Элементарный метод решения уравнений переноса нуклонов космических лучей в атмосфере // ЯФ. 2000. Т. 63. С. 2020–2028.

2. Naumov V.A., Sinegovskaya T.S. Atmospheric proton and neutron spectra at energies above 1 GeV // Proc. 27 ICRC. Hamburg, 2001. V. 1. P. 4173–4176; hep-ph/0106015.

3. Gaisser T.K., Honda M. Flux of Atmospheric Neutrinos // Ann. Rev. Nucl. Part. Sci. 2002. V. 52. P. 153–199; hep-ph/0203272.

4. Никольский С.И. Энергетический спектр и ядерный состав первичных космических лучей // Проблемы физики космических лучей. М.: Наука, 1987. С. 169–185.

5. Ерлыкин А.Д., Крутикова Н.П., Шабельский Ю.М. Прохождение космических лучей через атмосферу в модели кварк-глюонных струн // ЯФ. 1987. Т. 45. С. 1075–1084.

6. Кимель Л.Р., Мохов Н.В. Распределения частиц в диапазоне энергий 10⁻²-10¹² эВ, инициированные в плотных средах высокоэнергетическими адронами // Изв. вузов. Сер. Физика. 1974. Т. 17. Вып. 10. С. 17–23.

7. Naumov V.A. Atmospheric muons and neutrinos // Proc. 2nd Workshop on neutrino telescopes. Hamburg, 2001. hep-ph/0201310 V. 2.

8. Кочанов А.А., Синеговская Т.С., Синеговский С.И. Генерация пионов в адронных каскадах, инициируемых космическими лучами высоких энергий в атмосфере Земли // Международная Байкальская молодежная научная школа по фундаментальной физике, 12–17 сент. 2005, Иркутск. Труды VIII конф. молодых ученых «Астрофизика и физика околоземного космического пространства». Иркутск: ИСЗФ СО РАН, 2005. С. 202–204.

9. Kornmayer H., Mielke H.H. et al. High-energy cosmic-ray neutrons at sea level // J. Phys. G: Nucl. Part. Phys. 1995. V. 21. P. 439–449.

10. Aglietta M. et al. Measurement of the cosmic ray hadron spectrum up to 30 TeV at mountain altitude: the primary proton spectrum // Astropart. Phys. 2003. V. 19. P. 329–338; astro-ph/0207543.

11. Ashton F., Saleh A.J. Energy spectrum of hadrons in cosmic rays at sea level // Nature. Letters to editor. 1975. V. 256. P. 387–388.

12. Siohan F. et al. Unaccompanied hadron flux at a depth of 730 g/cm² // J. Phys. G: Nucl. Part. Phys. 1978. V. 4, N. 7.

13. Mocchiutti E. Atmospheric and interstellar cosmic rays measured with the CAPRICE98 experiment // PhD thesis. Royal Institute of Technology. Stockholm, 2003.

¹Иркутский государственный университет, Иркутск

² Иркутский государственный университет путей сообщения, Иркутск