УДК 536.7, 538.956, 541.12

ФАЗОВЫЙ ПЕРЕХОД РАСПЛАВ–КРИСТАЛЛ В ДВУХКОМПОНЕНТНОЙ СИСТЕМЕ ТВЕРДЫХ СФЕР

Ю.В. Аграфонов, Т.В. Бирюлина

LIQUID-SOLID TRANSITION IN A HARD–SPHERE BINARY MIXTURE

Yu.V. Agrafonov, T.V. Biryulina

Введение

В настоящее время существует два основных подхода к описанию фазовых переходов: двухфазный, основанный на теории Гиббса, и однофазный, использующий уравнение Орнштейна–Цернике для одно- $G_1(\vec{r_1})$ и двухчастичной $G_{12}(\vec{r_1},\vec{r_2})$ функций распределения:

$$\omega_1 = n J G_2 S_{12} d(2) + \ln a, \tag{1}$$

$$h_{12} = C_{12} + n [G_3 C_{13} h_{23} d(3).$$
⁽²⁾

В двухфазном подходе рассматриваются термодинамические условия равенства давления P, температуры θ и химического потенциала μ сосуществующих фаз. В настоящее время данный подход хорошо обоснован. С его помощью можно достаточно точно для простых жидкостей рассчитывать кривые фазовых равновесий р(θ) методами численного эксперимента или с помощью методов функционала плотности. Но в глобальной теории Гиббса рассматривается состояние сразу всей макроскопической системы и вообще отсутствует понятие «структура». Поэтому признаки фазовых переходов (изменения структуры вещества) в рамках этой теории так и не удается сформулировать. Сама же структура определяется путем различной обработки данных численного эксперимента, что сопряжено с расчетными трудностями: приходится методом перебора определять структуру второй фазы. В случае сложных систем (например, смесей) эти трудности становятся практически непреодолимыми.

С точки зрения однофазного подхода, поскольку фазовый переход происходит в результате потери устойчивости первой (материнской) фазы, рассматривать параметры второй фазы совсем не обязательно. Это очень упрощает рассматриваемую задачу. Также на основе локальной теории с помощью уравнения Орнштейна-Цернике достаточно легко определить понятие структуры с помощью функций $G_1(\vec{r_1})$ $G_{12}(\vec{r_1},\vec{r_2})$. Так, одночастичная функция распределения $G_1(\vec{r_1})$ описывает расположение частиц относительно лабораторной системы координат и определяет структуру первого порядка. Двухчастичная функция распределения $G_{12}(\vec{r_1},\vec{r_2})$ описывает взаимное расположение частиц друг относительно друга и определяет структуру флуктуаций или структуру второго порядка. Она существует во всех веществах, за исключением идеального газа, и может быть напрямую определена из эксперимента по рассеянию рентгеновских лучей. Поэтому с помощью функции распределения $G_1(\vec{r_1})$ достаточно легко найти на фазовой диаграмме точки, в которых структура вещества начинает меняться: в случае газов и жидкостей $G_1(\vec{r_1})$ =const, меняющаяся скачком при переходе от газовой к жидкой фазе, для кристалла $G_1(\vec{r_1})$ является периодической функцией от *r*.

Обобщенное уравнение Орнштейна-Цернике (1-2) вместе с уравнением для бридж-функционала, связывающего функции h_{12} и C_{12} , является точным эквивалентом распределения Гиббса. Как известно, последнее строго справедливо в термодинамическом пределе (N $\rightarrow \infty$, V $\rightarrow \infty$, c = const), и согласно теореме Ван-Хова, пределом однофазных состояний пространственно-однородной системы является линия фазового равновесия. Это означает, что точное уравнение Орнштейна-Цернике вместе с точным уравнением замыкания имеет физические решения только для термодинамически устойчивых однофазных состояний, на линии же фазового равновесия (при переходе вещества из одной фазы в другую) решения должны исчезать. В частности, при переходе вещества из жидкого состояния в кристаллическое решение для жидкой фазы должно исчезать при достижении системой определенной плотности плотности кристаллизации n₀. Так, например, известно, что действительное решение уравнения Орнштейна-Цернике (ОЦ) (2) с замыканием Мартынова–Саркисова исчезает при плотности $\rho = n_0 \approx 1.01$ и значении Ω_{min}=-1 [1].

Уравнение ОЦ для двухкомпонентной системы в случае предельного разбавления

Мы рассматриваем фазовый переход расплавкристалл в двухкомпонентной системе твердых сфер для случая предельного разбавления. Для этого сначала обобщим уравнение ОЦ на двухкомпонентный расплав, состоящий из частиц двух сортов α и β с плотностями соответственно n_{α} и n_{β} (причем полная плотность системы $n = n_{\alpha} + n_{\beta}$). В этом случае структура вещества задается набором одночастичных функций распределения $G_1^{\alpha}(r_1)$, $G_1^{\beta}(r_1)$, относящимся к отдельным частицам того или иного сорта, и набором двухчастичных функций распределения $G_1^{\alpha\alpha}(r_1, r_2)$, $G_1^{\beta\beta}(r_1, r_2)$, $G_1^{\alpha\beta}(r_1, r_2)$, относящимся к произвольной паре частиц того и другого сорта. Тогда уравнение ОЦ преобразуется в систему трех уравнений:

$$h_{12}^{\beta\beta} = C_{12}^{\beta\beta} + n_{\alpha} \int C_{13}^{\beta\alpha} h_{23}^{\beta\alpha} d(3^{\alpha}) + n_{\beta} \int C_{13}^{\beta\beta} h_{23}^{\beta\beta} d(3^{\beta}) , \quad (3)$$

$$h_{12}^{\alpha\beta} = C_{12}^{\alpha\beta} + n_{\alpha} \int C_{13}^{\alpha\alpha} h_{23}^{\beta\alpha} d(3^{\alpha}) + n_{\beta} \int C_{13}^{\alpha\beta} h_{23}^{\beta\beta} d(3^{\beta}) ,$$
(4)

$$h_{12}^{\alpha\alpha} = C_{12}^{\alpha\alpha} + n_{\alpha} \int C_{13}^{\alpha\alpha} h_{23}^{\alpha\alpha} d(3^{\alpha}) + n_{\beta} \int C_{13}^{\alpha\beta} h_{23}^{\alpha\beta} d(3^{\beta}) .$$
(5)

Совместное решение этой системы уравнений при заданных значениях парциальных плотностей

 n_{α} , n_{β} является достаточно сложной задачей. Однако эта система может быть упрощена для случая предельно разбавленного раствора. В этом случае концентрация растворенного вещества $n_{\alpha} \to 0$, а концентрация растворителя $n_{\beta} \to n$ и уравнения приобретают более простой вид:

$$h_{12}^{\beta\beta} = C_{12}^{\beta\beta} + n \int C_{13}^{\beta\beta} h_{23}^{\beta\beta} d(3^{\beta}), \qquad (6)$$

$$h_{12}^{\alpha\beta} = C_{12}^{\alpha\beta} + n \int C_{13}^{\alpha\beta} h_{23}^{\beta\beta} d(3^{\beta}) , \qquad (7)$$

$$h_{12}^{\alpha\alpha} = C_{12}^{\alpha\alpha} + n \int C_{13}^{\alpha\beta} h_{23}^{\alpha\beta} d(3^{\beta}).$$
 (8)

В системе (6) – (8) первое уравнение совпадает с уравнением для однокомпонентной системы и решается независимо от двух других. Способы его решения в настоящее время достаточно хорошо разработаны [2]. Поэтому исходные функции можно считать известными. Если подставить их во второе уравнение, можно найти решение последнего. Также и решение третьего уравнения находится через два предыдущих.

Численное решение уравнения ОЦ

Для однокомпонентной системы мы нашли, что функция Ω_{12} достигает минимума $\Omega_{\min} = -1$ в точке r = 1.4 при $\rho = 1.012$. Эти значения согласуются с данными методов Монте–Карло, функционала плотности и др., согласно которым плотность кристаллизации жидкости для потенциала твердых сфер лежит в интервале $\rho = 0.9-1.02$ [3–4].

Решение системы уравнений (6) – (8) будет параметрически зависеть от соотношения диаметров частиц $m = \sigma_{\alpha}/\sigma_{\beta}$ сорта α и β . Нами были проведены вычисления для двух значений параметра m, когда частицы растворенного вещества α в два раза меньше (m = 1/2) и в два раза больше (m = 2) частиц растворителя (рис. 1) [9]. Расстояние между центрами частиц измеряется в единицах диаметра частиц сорта β .

В случае m = 1/2 молекулы предельно разбавленной примеси сорта α имеют возможность перемещаться между молекулами растворителя сорта β . Графики функций $G^{\alpha\beta}$ (пунктирная линия) и $G^{\alpha\alpha}$ (штрих-пунктирная линия) в сравнении с графиком функции $G^{\beta\beta}$ однокомпонентной системы приведены на рис. 2, *а*. Минимально допустимые расстояния между центрами частиц разных сортов равны $r_{\min}^{\alpha\beta} = 0.75$, $r_{\min}^{\alpha\alpha} = 0.5$ (для растворителя $r_{\min}^{\beta\beta} = 1$), что отражает факт непроницаемости твердых сфер.

Случай m > 1 требует более аккуратного рассмотрения, так как одновременно с уменьшением числа частиц примеси N_{α} происходит увеличение их диаметра σ_{α} . В результате частицы примеси не имеют возможности свободно перемещаться в растворе. При фиксированном значении объема это означает, что в системе уменьшается число частиц растворителя N_{β} . Тем самым уменьшается суммарная плотность жидкости n_1 . Поэтому в уравнении (7) функция $h_{12}^{(\beta\beta)}$ описывает однокомпонентный раствор при плотности кристаллизации n_0 . В то же время $\gamma_{12}^{(\alpha\beta)}$ является искомой функцией, параметром которой является плотность $n_1 < n_0$.

Рис. 1. Кристаллизация двухкомпонентной жидкости с соотношением диаметров частиц m = 1/2 (*a*) и m = 2 (*б*).

На рис. 2, б приведены графики функций $G^{\alpha\beta}$ и $G^{\alpha\alpha}$ в сравнении с графиком функции $G^{\beta\beta}$ для m = 2. Максимальное значение плотности n_i , при которой еще существуют действительные решения уравнений (7)–(8), равно $n_i^{max} = 0.88$ (для $\Omega_{12}^{(\alpha\beta)}$) и $n_i^{max} = 0.75$ (для $\Omega_{12}^{(\alpha\alpha)}$).

Рис. 2. График функций *G*_{ij}: *m* = 1/2 (*a*) и *m* = 2 (*б*).

В работе [10] вычислена радиальная функция распределения G_{11} для уравнения Перкус–Йевика и аппроксимации GMSA для твердых сфер (однокомпонентная система) при плотности c = 0.92437 (3 = 0.484). Максимальное (контактное) значение она достигает при $G_{11} \approx 5.4$. В нашем случае для такой же плотности это значение равно $G_{11} = 4.56$. Наши результаты более совпадают с работой [11], где максимальное значение $G_{11} \approx 4.6$.

Структурный фактор фазового перехода расплав-кристалл

При помощи найденных функций $G_1^{\beta\beta}(r_1, r_2)$, $G_1^{\alpha\beta}(r_1, r_2)$ и $G_1^{\alpha\alpha}(r_1, r_2)$ мы вычислили структурный фактор для предельно разбавленного раствора твердых сфер:

$$S(k) = 1 + 4\pi\rho \int_{0}^{\infty} h(r) \frac{\sin kr}{kr} r^{2} dr \,.$$
(9)

Графики для обоих случаев m = 1/2 и m = 2 приведены на рис. 3 и 4 соответственно.

Поведение функции $S^{\beta\beta}(k)$ для однокомпонентной системы имеет стандартный вид. Полученные резуль-

Рис. 3. Структурный фактор S(k) жидкости на линии кристаллизации. Частицы раствора больше частиц примеси (m = 1/2).

Рис. 4. Структурный фактор S(k) жидкости на линии кристаллизации. Частицы раствора больше частиц примеси (m = 2).

таты для $S^{\alpha\beta}(k)$ (при m = 1/2) качественно совпадают с результатами работы [6], в которой для раствора частиц трех сортов с плотностью n = 0.936 (частицы двух из них имеют малую концентрацию) приведены значения фурье-преобразования h_{ii} .

Существует также критерий кристаллизации Хансена–Верле [5], согласно которому жидкость замерзает, когда максимальное значение ее структурного фактора становится равным S(k) = 2.85. Он находится в достаточно хорошем согласии с данными численных экспериментов и с данными, полученными с помощью интегральных уравнений [8]. В нашем случае для однокомпонентной системы при максимальной плотности $n_0 = 1.012$, при которой еще существует решение уравнения ОЦ, структурный фактор $S_{max}(k) = 3.431$ (при k = 7.056). Максимального значения, равного S(k) = 2.85 структурный фактор в нашем случае достигает при меньшей плотности, равной $n_0 = 0.932$. График S(k) для однокомпонентной системы при этой плотности приведен на рис. 5.

В работе [7] для такой же системы (однокомпонентной), как наша, приведено значение структурного фактора $S_{max}(k) = 2.85$ (k = 6.95), которого он достигает при плотности $n_0 = 0.928$ (различие в плотности составляет 0.43 %). Критерий $\Omega_{min} = -1$, использованный нами для определения плотности кристаллизации жидкости, здесь рассматривается в качестве критерия определения плотности уже собственно кристаллического состояния (для которого $n_0 = 1.018$).

Обсуждение результатов и заключительные замечания

Поиск критерия и выяснение механизма фазового перехода, расчет параметров фазовых переходов, исходя из первых принципов, в настоящее время являются основными задачами статистической теории фазовых переходов. Единой точки зрения на данный вопрос в настоящее время нет.

С помощью уравнения ОЦ делаются попытки с описать также метастабильные и даже аморфные состояния. Метастабильные состояния являются неустойчиво-равновесными и не соответствуют строгим уравнениям статистической механики, полу-

Рис. 5. Структурный фактор S(k) однокомпонентной жидкости при плотности $n_0 = 0.932$

Рис. 6. График функций G_{ii} для $m = \frac{1}{2}$.

ченным в термодинамическом пределе для описания устойчивых равновесных состояний. Но теоретические и компьютерные расчеты показывают, что решения уравнения ОЦ, возможно, могут быть продолжены и дальше границы стабильной области [7]. В работе [13] приведен, например, график структурного фактора для уравнения Перкус–Йевика метастабильного состояния (стекло) системы твердых сфер при плотности n = 1.066.

Используя метод, развитый в [12] и примененный в [9] к описанию кристаллизации в предельно разбавленной двухкомпонентной смеси твердых сфер, мы вычислили первое приближение функции G для кристаллического состояния для нашего случая. Результаты для m = 1/2 приведены на рис. 6. Причем, возможно, уширение второго пика функции G указывает на признаки метастабильного состояния [7].

Отметим также, что, поскольку в конкретных расчетах приходится прибегать к приближенным уравнениям (в уравнении ОЦ точные выражения для бридж-функционалов, связывающих S_{ij} , C_{ij} и h_{ij} , заменяются на приближенные), возникает вообще вопрос о том, в какой степени именно приближенные уравнения способны предсказать фазовые переходы. Кроме того, численное решение приближенных уравнений имеет ряд особенностей: в точках сингулярности итерационные процедуры уже сами по себе могут стать неустойчивыми (например, зависеть от начальных приближений, приводить к возникновению ложных решений и пр.).

СПИСОК ЛИТЕРАТУРЫ

1. Мартынов Г.А., Саркисов Г.Н. Статистическая теория фазовых переходов первого рода // Кристаллография. 1989. Т. 34, № 3. С. 541–545.

2. Labik S., Malijevsky A., Vonka P. A rapidly convergent method of solving the OZ equation // Mol. Phys. 1985. V. 56, N 3. P. 709–715.

3. Фишер И.З. Статистическая теория жидкостей. М.: Гос. изд-во физ.-мат. лит-ры, 1961.

4. Физика простых жидкостей/ Под ред. Г. Темперли, Дж. Роулинсон, Дж. Рашбрук. М.: Мир, 1971.

5. Hansen J.-P., Verlet L. Phase transition of the Lennard-Jones system // Phys. Rev. 1969. V. 184, N 1. P. 151–161.

6. Yuste S.B., Santos A. Structure of multi-component hard-sphere mixtures // J. Chem. Phys. 1998. V. 108, N 9. P. 3683–3693.

7. Саркисов Г.Н. Молекулярные функции распределения стабильных, метастабильных и аморфных классических моделей // УФН. 2002. Т. 172, № 6. С. 647–669.

8. Sarkisov G. Approximate integral equation theory for classical fluids // J. Chem. Phys. 2001. V. 114, № 3. P. 9496–9505.

9. Аграфонов Ю.В., Бирюлина Т.В. Фазовый переход расплав-кристалл в двухкомпонентной системе // Известия вузов. 2000. № 2. С. 54-61.

10. Yuste B., Santos A. Radial distribution function for hard spheres // Phys. Rev. A. 1991. V. 43, N 10. P. 5418–5423

11. Barker J.A., Henderson D. Theories of liquids // Annu. Rev. Phys. Chem. 1972. V. 23. P. 439–484.

12. Аграфонов Ю. В., Мартынов Г. А. Статистическая теория кристаллического состояния. // ТМФ. 1992. Т. 90, № 1. С. 113–127.

13. Yuste S.B., de Haro M.L., Santos A. Structure of hard-sphere metastable fluids // Phys. Rew. E. 1996. V. 53, N 5. P. 4820-4826.

Иркутский государственный университет, Иркутск