УДК 523.74

ПРОФИЛИ ЛИНИИ НЕЙТРАЛЬНОГО МАРГАНЦА 539.5 HM В ПЯТНАХ, ФАКЕЛАХ И СПОКОЙНЫХ ОБЛАСТЯХ НА СОЛНЦЕ

А.В. Андриенко

NEUTRAL MANGANESE 539.5 NM LINE PROFILES IN SPOTS, PLAGES AND QUITE REGIONS ON THE SUN

O.V. Andriyenko

Из наблюдений в спектре Солнца как звезды, проведенных в обсерватории Китт-Пик, стало известно, что линия Mn I 539.5 нм сильно меняется с циклом солнечной активности. Такое поведение характерно для линий, которые образуются в хромосфере, и не характерно для линий, которые образуются в фотосфере. В этой работе приведены профили линии Mn I 539.5 нм в различных областях на диске Солнца и обсуждается необычное поведение этой линии.

From observations of the Sun as a star made at Kitt Peak observatory it is known that Mn I 539.5 nm line varies during a solar activity cycle. Such behavior is typical for chromospheric lines and it is unusual for photospheric lines. In this contribution Mn I 539.5 nm line profiles in different areas on the Sun are presented and the line unusual variations are discussed.

Введение

Амплитуды вариаций эквивалентной ширины и центральной глубины линии Mn I 539.5 нм в цикле солнечной активности больше 1 %. Линия становится слабее в максимуме и сильнее в минимуме цикла солнечной активности. Линия 539.5 нм считается фотосферной и подобное «хромосферное» поведение является загадочным.

Mn I 539.5 нм является очень чувствительной к температуре. Однако необходимо предположить, что температура фотосферы изменяется почти на 3 К, чтобы объяснить наблюдаемые вариации [1]. Вместе с тем по наблюдениям линии углерода 538.0 нм было установлено, что температура фотосферы меняется не более чем на 1.5 К [2].

Как показали НЛТР-расчеты [3], линия 539.5 нм является чувствительной к оптической накачке другой линии марганца. Линия Mn I uv 1 (279.48 нм) перекрывается с линией Mg II k (279.5 нм), поскольку линии 539.5 нм и uv 1 имеют один и тот же нижний уровень возбуждения, оптическая накачка от линии Mg II k уменьшает населенность этого уровня и линия 539.5 нм становится слабее.

Для дальнейшего выяснения механизма образования линии 539.5 нм и для проверки гипотезы оптической накачки, в частности, необходимы наблюдения этой линии, равно как и других линий марганца. В этой работе представлены некоторые результаты наблюдений линии 539.5 нм.

Инструменты и оборудование

Наблюдения проводились на телескопах АЦУ-26 и VTT. Телескоп АЦУ-26 установлен в обсерватории Терскол. Обсерватория находится на одноименном пике Терскол высотой 3100 м. Пик является лавовым отрогом Эльбруса. Главное зеркало телескопа имеет диаметр 65 см и фокус 17.7 м. Телескоп оснащен 5-камерным спектрографом. Полуширина инструментального контура спектрографа около 1.7 пм в 4-м порядке спектра, измерения ИК проводятся с помощью Не-Ne-лазера. Для наблюдений использовалась ПЗС-камера ST-7.

Телескоп VTT установлен в обсерватории Тейде. Обсерватория находиться на краю кратера одноименного вулкана на острове Тенерифе (Канарские о-ва, Испания) на высоте 2400 м. Телескоп оснащен эшелле-спектрографом. Наблюдения можно получать одновременно в разных спектральных линиях с помощью двух ПЗС-камер Xedar. Телескоп также оборудован системой компенсации дрожаний изображения и адаптивной оптикой.

Профили линии 539.5 нм от центра к краю диска Солнца

Наблюдения линии 539.5 нм от центра к краю диска Солнца были получены на телескопе АЦУ-26 1 мая 2002 г. Наблюдения производились в спокойных областях в пяти положениях на диске Солнца: соsθ =1.0, 0.80, 0.60, 0.43 и 0.27 вдоль линии близкой к экватору. В каждом положении было получено по 10 кадров на протяжении около 10 мин. Кадры исправлялись за темновой ток, плоское поле, рассеянный свет. С каждого кадра затем был получен профиль линии при усреднении вдоль щели спектрографа. В свою очередь, 10 профилей, полученных с каждого кадра, также усреднялись. Таким образом, были получены профили, усредненные по пространству и времени. Эти профили были исправлены за инструментальный контур спектрографа. Затем по каждому профилю был построен бисектор линии. Результаты представлены на рис. 1.

Рис. 1, а. Профили линии Mn I539.5 нм в разных положениях на диске Солнца.

Рис. 1, б. Бисекторы, построенные по профилям. Профили несколько разделены по интенсивности, а бисекторы смещены друг относительно друга для удобства восприятия. Наблюдения получены 1 мая 2002 г. на телескопе АЦУ-26 (обсерватория Терскол).

Аналогичные наблюдения были проведены 25 июля 2004 г. на телескопе VTT. Наблюдения производились в спокойных областях в шести положениях на диске Солнца: cosθ =1.0, 0.64, 0.42, 0.28, 0.20 и 0.15 вдоль центрального меридиана. В каждом положении было получено 50 кадров на протяжении 15 мин. Обработка была аналогичной, но профили не исправлялись за инструментальный контур. Результаты представлены на рис. 2.

В таблице представлены параметры (центральная глубина CD, эквивалентная ширина EW и полуширина FWHM) профилей линии 539.5 нм, полученных на АЦУ-26 и VTT в различных положениях на диске Солнца. Для сравнения приведем данные параметры, полученные из профиля этой линии в Льежском атласе: CD = 0.479, EW = 7.43 пм, FWHM = 15.19 пм.

Как видно из таблицы изменения параметров линии от центра к краю солнечного диска качественно согласуются по результатам обоих наблюдений, хотя различия превосходят ошибки наблюдений, особенно если учесть, что наблюдения на VTT не исправлялись за инструментальный контур.

Из рис. 1 видно, что бисекторы линии имеют С-образную форму и становятся более Г-образными

a

Рис. 2, а. Профили линии Mn I 539.5 нм в разных положениях на диске Солнца.

Рис. 2, б. Бисекторы, построенные по профилям. Профили несколько разделены по интенсивности, а бисекторы смещены друг относительно друга для удобства восприятия. Наблюдения получены 25 июля 2004 г. на телескопе VTT (обсерватория Тейде).

АЦУ-26				VTT			
cosθ	CD	EW, пм	FWHM,	cosθ	CD	EW, пм	FWHM,
			ПМ				ПМ
1.0	0.478	7.38	15.10	1.0	0.454	7.07	15.17
0.80	0.464	7.28	15.43	0.64	0.495	8.16	16.01
0.60	0.481	7.84	16.00	0.42	0.504	8.72	16.90
0.43	0.477	8.29	17.08	0.28	0.500	9.11	17.82
0.27	0.438	8.28	18.65	0.20	0.485	9.17	18.56
				0.15	0.478	9.17	18.88

к краю солнечного диска. Такое поведение характерно для фотосферных линий. По-другому ведут себя бисекторы линии на рис. 2: в центре диска бисектор имеет достаточно выраженную С-образную форму, однако при переходе к краю бисектор приобретает все более выраженную обратную С-образную форму. Такое поведение является необычным. Впрочем, эти наблюдения проводились на эшелле-, а не классическом спектрографе, возможно, они искажены весьма асимметричным инструментальным контуром (исправление за ИК не проводилось, поскольку мы не имели возможности измерить или получить ИК).

Фотометрическая ошибка при наблюдениях как на АЦУ-26, так и на VTT составляла около 0.2 %. Таким образом, профили и бисекторы линии были измерены с хорошей точностью. Необходимы дополнительные наблюдения для выяснения причины расхождений.

Профили линии 539.5 нм в пятнах и факельных площадках

На рис. 3 (верхняя панель) представлены профили линии 539.5 нм, полученные на телескопе АЦУ-26 7 и 14 августа 2003 г. в активных областях AR0424, 0425, 0431. Обработка была аналогичной вышеизложенной. На нижней панели рис. 3 представлены профили, полученные из скана активной области AR0652, наблюдения проводились на VTT 25 июля 2004 г. Скан AR0652 в центральной интенсивности линии (поделенной на интенсивность в континууме) также представлен на рис. 3.

Легко видеть, что линия 539.5 нм ослаблена в факельных площадках и усилена в пятнах. По-видимому,

Рис. 3. Вверху – профили линии Mn I 539.5 нм в AR 0424, 0425, 0431, полученные по наблюдениям на АЦУ-26 7 и 14 августа 2003 г.; внизу – профили Mn I 539.5 нм в AR0652, полученные из скана, сделанного на VTT 25 июля 2004 г. (скан в центре линии изображен рядом с нижней панелью).

линия более усилена в больших пятнах, чем в малых. Причем из наблюдений на VTT можно заметить, что эта линия более глубокая по краю тени большого пятна, чем в центре тени.

Заключение

В работе [4] по наблюдениям линий нейтрального марганца 539.5, 542.4, 543.3 и 601.7 нм автор пришел к выводу, что невозможно сделать однозначное заключение о правильности гипотезы оптической накачки линии 539.5 нм непосредственно из наблюдений, поскольку разные линии ведут себя качественно одинаково. Необходимо численное НЛТРмоделирование линий марганца, которое должно удовлетворительно наблюдаемые воспроизвести профили. Наблюдения, представленные в этой работе, поднимают еще больше вопросов к линии Mn I 539.5 нм: отличия в профилях центр-край, полученных на АЦУ-26 и VTT, трудно объяснить различием инструментов. Необходимы дополнительные наблюдения.

Хочется выразить признательность Елене Хоменко и Сергею Осипову за прекрасное взаимодействие при наблюдениях на VTT. Я очень благодарен Маноло Колладосу за содействие в отладке и юстировке оборудования и спектрографа на VTT. Я признателен за поддержку в рамках гранта INTAS N 00-00084.

СПИСОК ЛИТЕРАТУРЫ

1. Erkapic S.I., Vince // Publ. Astron. Obs. Belgrade. 1995. V. 49. P. 159–162.

2. Gray D.F., Livingston W.C. // Astrophys. J. 1996. V. 470. P. 1470–1478.

3. Doyle J.G. et al // Astronomy and Astrophysics. 2001. V. 369. P. L13–L16.

4. Andriyenko O.V. // Multi-Wavelength Investigations of Solar Activity, IAU Symposium N 223. UK: Cambridge University Press, 2004. P. 85–86.

Обсерватория Терскол, пос. Эльбрус, КБР, РФ Главная астрономическая обсерватория НАН Украины, Киев